在手写数字识别数据集上,分别用 k 近邻、支持向量机算法、决策树算法实现手写数字 识别。通过网格搜索与交叉验证相结合的方式分别找到 KNN 、SVM 和 DT 的最佳超参数, 并使用分类模型评价指标 (准确率和混淆矩阵) 进行评测 。(程序+准确率+混淆矩阵可视化 结果+算法对比分析)

时间: 2024-02-29 09:56:42 浏览: 29
这是一个比较复杂的问题,需要进行算法实现和调参,并进行模型评价和结果可视化。这里给出一个大致的流程: 1. 数据集准备:从网上下载手写数字识别数据集,将数据集分为训练集和测试集。 2. 特征提取:对手写数字图像进行特征提取,例如将图像转化为灰度图像,然后使用图像处理算法提取特征,例如边缘检测、轮廓提取等。 3. KNN算法实现:使用sklearn库中的KNeighborsClassifier类实现KNN算法,通过网格搜索和交叉验证找到最佳超参数(例如K值),并进行模型评价,得到准确率和混淆矩阵,并将结果可视化。 4. SVM算法实现:使用sklearn库中的SVC类实现SVM算法,通过网格搜索和交叉验证找到最佳超参数(例如C值和gamma值),并进行模型评价,得到准确率和混淆矩阵,并将结果可视化。 5. DT算法实现:使用sklearn库中的DecisionTreeClassifier类实现DT算法,通过网格搜索和交叉验证找到最佳超参数(例如max_depth值),并进行模型评价,得到准确率和混淆矩阵,并将结果可视化。 6. 算法对比分析:将三种算法的准确率和混淆矩阵进行对比分析,得出每种算法的优缺点,并选择最优算法。 这个流程需要进行代码实现和调试,需要一定的编程能力和机器学习基础。
相关问题

使用R语言实现搭建支持向量机实现MNIST手写数字数据集识别

好的,下面是使用R语言实现搭建支持向量机实现MNIST手写数字数据集识别的步骤: 1. 导入MNIST数据集 首先需要导入MNIST数据集,这个数据集包含有60000个28x28像素的手写数字图片和10000个测试图片。可以使用`read.table()`函数读取数据集中的训练集和测试集。 2. 数据预处理 在训练SVM模型之前,需要对数据集进行预处理。可以将每个像素点的值缩放到0到1之间,这可以使用`scale()`函数实现。同时,还需要将标签转化为因子类型。 3. 模型训练 可以使用`svm()`函数构建支持向量机模型。SVM模型是一种二分类模型,但是可以通过“一对多”策略扩展到多分类问题,这里使用默认的“一对多”策略。在训练模型时,需要指定内核函数(如径向基函数),以及一些超参数(如惩罚因子C)。可以使用交叉验证确定最佳超参数。 4. 模型评估 使用测试集对训练好的模型进行评估,可以使用`predict()`函数进行预测。可以计算准确率、精确度、召回率等指标来评估模型的性能。 这是一个大致的流程,具体实现过程可能会有所不同,需要根据具体情况进行调整。

用Python实现用支持向量机辨别手写数字识别的算法

好的,以下是用Python实现用支持向量机辨别手写数字识别的算法的步骤: 1. 导入需要的库和数据集 ```python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import svm import matplotlib.pyplot as plt # 导入手写数字数据集 digits = datasets.load_digits() X = digits.data y = digits.target ``` 2. 数据集的拆分 将数据集分为训练集和测试集,以便我们可以测试模型的准确性。 ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) ``` 3. 创建SVM模型 ```python # 创建SVM模型 model = svm.SVC(kernel='linear') ``` 4. 训练模型 ```python # 训练模型 model.fit(X_train, y_train) ``` 5. 测试模型 ```python # 预测测试集 y_pred = model.predict(X_test) # 模型准确性 accuracy = model.score(X_test, y_test) print('模型准确性:', accuracy) ``` 6. 可视化预测结果 ```python # 可视化预测结果 fig, axes = plt.subplots(4, 4, figsize=(10, 10)) for ax, image, prediction in zip(axes.flatten(), X_test, y_pred): ax.set_axis_off() image = image.reshape(8, 8) ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') ax.set_title(f'Prediction: {prediction}') plt.show() ``` 完整代码如下: ```python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import svm import matplotlib.pyplot as plt # 导入手写数字数据集 digits = datasets.load_digits() X = digits.data y = digits.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建SVM模型 model = svm.SVC(kernel='linear') # 训练模型 model.fit(X_train, y_train) # 预测测试集 y_pred = model.predict(X_test) # 模型准确性 accuracy = model.score(X_test, y_test) print('模型准确性:', accuracy) # 可视化预测结果 fig, axes = plt.subplots(4, 4, figsize=(10, 10)) for ax, image, prediction in zip(axes.flatten(), X_test, y_pred): ax.set_axis_off() image = image.reshape(8, 8) ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') ax.set_title(f'Prediction: {prediction}') plt.show() ```

相关推荐

最新推荐

recommend-type

手写数字识别:实验报告

AIstudio手写数字识别项目的实验报告,报告中有代码链接。文档包括: 1.数据预处理 2.数据加载 3.网络结构尝试:简单的多层感知器、卷积神经网络LeNet-5、循环神经网络RNN、Vgg16 4.损失函数:平方损失函数、交叉...
recommend-type

Python实现识别手写数字 Python图片读入与处理

本文主要介绍如何使用Python实现手写数字的识别,以及图片的读入与处理。在进行手写数字识别的过程中,首先要对图片进行一系列的预处理,包括读入图片、转换为灰度图像、去除背景噪声、切割图像、调整图像大小以及...
recommend-type

python实现基于SVM手写数字识别功能

主要为大家详细介绍了python实现基于SVM手写数字识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

手写数字识别(python底层实现)报告.docx

(1)认识MNIST数据集的数据格式,对MNIST数据集进行划分作为多层感知机的训练和测试数据; (2)利用python语言从零开始搭建多层感知机网络; (3) 通过调整参数提高多层感知机网络的准确度,并对实验结果进行评估...
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

在本示例中,我们将讨论如何使用Pytorch实现手写数字的识别,特别是针对MNIST数据集。MNIST数据集包含了60000个训练样本和10000个测试样本,每个样本都是28x28像素的手写数字图像。 首先,我们需要导入必要的库,...
recommend-type

广东石油化工学院机械设计基础课程设计任务书(二).docx

"广东石油化工学院机械设计基础课程设计任务书,涉及带式运输机的单级斜齿圆柱齿轮减速器的设计,包括传动方案拟定、电动机选择、传动比计算、V带设计、齿轮设计、减速器箱体尺寸设计、轴设计、轴承校核、键设计、润滑与密封等方面。此外,还包括设计小结和参考文献。同时,文档中还包含了一段关于如何提高WindowsXP系统启动速度的优化设置方法,通过Msconfig和Bootvis等工具进行系统调整,以加快电脑运行速度。" 在机械设计基础课程设计中,带式运输机的单级斜齿圆柱齿轮减速器设计是一个重要的实践环节。这个设计任务涵盖了多个关键知识点: 1. **传动方案拟定**:首先需要根据运输机的工作条件和性能要求,选择合适的传动方式,确定齿轮的类型、数量、布置形式等,以实现动力的有效传递。 2. **电动机的选择**:电动机是驱动整个系统的动力源,需要根据负载需求、效率、功率等因素,选取合适型号和规格的电动机。 3. **传动比计算**:确定总传动比是设计的关键,涉及到各级传动比的分配,确保减速器能够提供适当的转速降低,同时满足扭矩转换的要求。 4. **V带设计**:V带用于将电动机的动力传输到减速器,其设计包括带型选择、带轮直径计算、张紧力分析等,以保证传动效率和使用寿命。 5. **齿轮设计**:斜齿圆柱齿轮设计涉及模数、压力角、齿形、齿轮材料的选择,以及齿面接触和弯曲强度计算,确保齿轮在运行过程中的可靠性。 6. **减速器铸造箱体尺寸设计**:箱体应能容纳并固定所有运动部件,同时要考虑足够的强度和刚度,以及便于安装和维护的结构。 7. **轴的设计**:轴的尺寸、形状、材料选择直接影响到其承载能力和寿命,需要进行轴径、键槽、轴承配合等计算。 8. **轴承校核计算**:轴承承受轴向和径向载荷,校核计算确保轴承的使用寿命和安全性。 9. **键的设计**:键连接保证齿轮与轴之间的周向固定,设计时需考虑键的尺寸和强度。 10. **润滑与密封**:良好的润滑可以减少摩擦,延长设备寿命,密封则防止润滑油泄漏和外界污染物进入,确保设备正常运行。 此外,针对提高WindowsXP系统启动速度的方法,可以通过以下两个工具: 1. **Msconfig**:系统配置实用程序可以帮助用户管理启动时加载的程序和服务,禁用不必要的启动项以加快启动速度和减少资源占用。 2. **Bootvis**:这是一个微软提供的启动优化工具,通过分析和优化系统启动流程,能有效提升WindowsXP的启动速度。 通过这些设置和优化,不仅可以提高系统的启动速度,还能节省系统资源,提升电脑的整体运行效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python面向对象编程:设计模式与最佳实践,打造可维护、可扩展的代码

![Python面向对象编程:设计模式与最佳实践,打造可维护、可扩展的代码](https://img-blog.csdnimg.cn/direct/06d387a17fe44661b8a124ba652f9402.png) # 1. Python面向对象编程基础 面向对象编程(OOP)是一种编程范例,它将数据和方法组织成称为对象的抽象实体。OOP 的核心概念包括: - **类:**类是对象的蓝图,定义了对象的属性和方法。 - **对象:**对象是类的实例,具有自己的属性和方法。 - **继承:**子类可以继承父类的属性和方法,从而实现代码重用和扩展。 - **多态性:**子类可以覆盖父类的
recommend-type

cuda12.5对应的pytorch版本

CUDA 12.5 对应的 PyTorch 版本是 1.10.0,你可以在 PyTorch 官方网站上下载安装。另外,需要注意的是,你需要确保你的显卡支持 CUDA 12.5 才能正常使用 PyTorch 1.10.0。如果你的显卡不支持 CUDA 12.5,你可以尝试安装支持的 CUDA 版本对应的 PyTorch。
recommend-type

数控车床操作工技师理论知识复习题.docx

本资源是一份关于数控车床操作工技师理论知识的复习题,涵盖了多个方面的内容,旨在帮助考生巩固和复习专业知识,以便顺利通过技能鉴定考试。以下是部分题目及其知识点详解: 1. 数控机床的基本构成包括程序、输入输出装置、控制系统、伺服系统、检测反馈系统以及机床本体,这些组成部分协同工作实现精确的机械加工。 2. 工艺基准包括工序基准、定位基准、测量基准和装配基准,它们在生产过程中起到确定零件位置和尺寸的重要作用。 3. 锥度的标注符号应与实际锥度方向一致,确保加工精度。 4. 齿轮啮合要求压力角相等且模数相等,这是保证齿轮正常传动的基础条件。 5. 粗车刀的主偏角过小可能导致切削时产生振动,影响加工质量。 6. 安装车刀时,刀杆伸出量不宜过长,一般不超过刀杆长度的1.5倍,以提高刀具稳定性。 7. AutoCAD中,用户可以通过命令定制自己的线型,增强设计灵活性。 8. 自动编程中,将编译和数学处理后的信息转换成数控系统可识别的代码的过程被称为代码生成或代码转换。 9. 弹性变形和塑性变形都会导致零件和工具形状和尺寸发生变化,影响加工精度。 10. 数控机床的精度评估涉及精度、几何精度和工作精度等多个维度,反映了设备的加工能力。 11. CAD/CAM技术在产品设计和制造中的应用,提供了虚拟仿真环境,便于优化设计和验证性能。 12. 属性提取可以采用多种格式,如IGES、STEP和DXF,不同格式适用于不同的数据交换需求。 13. DNC代表Direct Numerical Control,即直接数字控制,允许机床在无需人工干预的情况下接收远程指令进行加工。 14. 刀具和夹具制造误差是工艺系统误差的一部分,影响加工精度。 15. 刀具磨损会导致加工出的零件表面粗糙度变差,精度下降。 16. 检验横刀架横向移动精度时,需用指示器检查与平盘接触情况,通常需要全程移动并重复检验。 17. 刀架回转的重复定位精度测试需多次重复,确保定位一致性。 18. 单作用叶片泵的排量与压力关系非线性,压力增加时排量可能减小,具体取决于设计特性。 19. 数控机床伺服轴常使用电动机作为驱动元件,实现高精度运动控制。 20. 全过程质量管理强调预防为主,同时也要注重用户需求和满意度。 21. MTBF(Mean Time Between Failures)指的是系统平均无故障时间,衡量设备可靠性的关键指标。 22. 使用完千分尺后,为了保持精度,应将千分尺归零并妥善保管。 23. 在其他条件不变时,包角越大,带传动传递的功率越大,因为更大的包角意味着更大的有效接触面积。 24. 设计夹具时,考虑工件刚性以减少变形,夹紧力应施加在稳定的部位。 25. 陶瓷刀具加工铝合金时,由于耐磨性好,磨损程度相对较低。 26. 几何造型中,二次曲线包括圆、椭圆、抛物线等,不包括直线和圆弧。 27. 切削力大小变化引起的加工误差,属于工艺系统动态误差。 28. 单作用叶片泵排量与压力关系同上。 29. 步进电动机的角位移由定子绕组通电状态决定,控制电机转速和方向。 30. 全过程质量管理中,预防为主的同时,还要重视预防和纠正措施的结合。 31. 伺服轴的驱动元件同样指电动机。 32. 车孔的关键技术包括刀具的选择、冷却和切屑控制,以及合理设定切削参数。 这份复习资料全面而深入地涵盖了数控车床操作工技师所需掌握的基础理论知识,对于提升技能和应对考试具有重要意义。