在手写数字识别数据集上,分别用 k 近邻、支持向量机算法、决策树算法实现手写数字 识别。通过网格搜索与交叉验证相结合的方式分别找到 KNN 、SVM 和 DT 的最佳超参数, 并使用分类模型评价指标 (准确率和混淆矩阵) 进行评测 。(程序+准确率+混淆矩阵可视化 结果+算法对比分析)
时间: 2024-02-29 14:56:42 浏览: 80
这是一个比较复杂的问题,需要进行算法实现和调参,并进行模型评价和结果可视化。这里给出一个大致的流程:
1. 数据集准备:从网上下载手写数字识别数据集,将数据集分为训练集和测试集。
2. 特征提取:对手写数字图像进行特征提取,例如将图像转化为灰度图像,然后使用图像处理算法提取特征,例如边缘检测、轮廓提取等。
3. KNN算法实现:使用sklearn库中的KNeighborsClassifier类实现KNN算法,通过网格搜索和交叉验证找到最佳超参数(例如K值),并进行模型评价,得到准确率和混淆矩阵,并将结果可视化。
4. SVM算法实现:使用sklearn库中的SVC类实现SVM算法,通过网格搜索和交叉验证找到最佳超参数(例如C值和gamma值),并进行模型评价,得到准确率和混淆矩阵,并将结果可视化。
5. DT算法实现:使用sklearn库中的DecisionTreeClassifier类实现DT算法,通过网格搜索和交叉验证找到最佳超参数(例如max_depth值),并进行模型评价,得到准确率和混淆矩阵,并将结果可视化。
6. 算法对比分析:将三种算法的准确率和混淆矩阵进行对比分析,得出每种算法的优缺点,并选择最优算法。
这个流程需要进行代码实现和调试,需要一定的编程能力和机器学习基础。
阅读全文