matlab二值图像合并质心距离最近的邻域
时间: 2023-10-31 14:00:09 浏览: 125
getNearestNeighborDistances.m:计算布尔图像中区域的最近邻距离。-matlab开发
以下是一种可能的解决方案:
1. 读入两幅二值图像并显示:
```matlab
img1 = imread('image1.png');
img2 = imread('image2.png');
imshowpair(img1, img2, 'montage');
```
2. 使用bwlabel函数对两幅图像进行连通域分析,得到各个连通域的标记:
```matlab
[L1, num1] = bwlabel(img1);
[L2, num2] = bwlabel(img2);
```
3. 对于每个连通域,在另一幅图像中寻找与之距离最近的连通域:
```matlab
centers1 = regionprops(L1, 'Centroid');
centers2 = regionprops(L2, 'Centroid');
for i = 1:num1
c1 = centers1(i).Centroid;
min_dist = Inf;
match_idx = -1;
for j = 1:num2
c2 = centers2(j).Centroid;
dist = norm(c1 - c2);
if dist < min_dist
min_dist = dist;
match_idx = j;
end
end
% 将两个连通域合并
if match_idx > 0
L2(L2 == match_idx) = i + num1;
end
end
```
4. 将合并后的标记转换为二值图像并显示:
```matlab
merged = L2 > 0;
imshow(merged);
```
完整代码如下:
```matlab
img1 = imread('image1.png');
img2 = imread('image2.png');
imshowpair(img1, img2, 'montage');
[L1, num1] = bwlabel(img1);
[L2, num2] = bwlabel(img2);
centers1 = regionprops(L1, 'Centroid');
centers2 = regionprops(L2, 'Centroid');
for i = 1:num1
c1 = centers1(i).Centroid;
min_dist = Inf;
match_idx = -1;
for j = 1:num2
c2 = centers2(j).Centroid;
dist = norm(c1 - c2);
if dist < min_dist
min_dist = dist;
match_idx = j;
end
end
if match_idx > 0
L2(L2 == match_idx) = i + num1;
end
end
merged = L2 > 0;
imshow(merged);
```
阅读全文