Transformer识别模型代码
时间: 2023-10-14 09:09:37 浏览: 67
以下是一个基于PyTorch实现的Transformer识别模型代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerClassifier(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, num_heads, dropout):
super(TransformerClassifier, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.num_layers = num_layers
self.num_heads = num_heads
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.pos_encoder = PositionalEncoding(hidden_dim, dropout=dropout)
encoder_layer = nn.TransformerEncoderLayer(hidden_dim, num_heads, hidden_dim, dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.fc = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(p=dropout)
def forward(self, src):
# src shape: (sequence_length, batch_size)
src = self.embedding(src) * math.sqrt(self.hidden_dim)
src = self.pos_encoder(src)
output = self.transformer_encoder(src)
output = output.mean(dim=0)
output = self.fc(output)
output = self.dropout(output)
return output
```
该模型包含一个Transformer编码器,输入为一个序列,输出为对序列进行分类的结果。其中包含一个Embedding层将输入的词语映射为固定维度的向量,一个位置编码层将位置信息融入到向量中,多个Transformer编码器层对输入的向量进行编码,一个全连接层将编码后的结果映射为分类结果。这个模型可以用于文本分类等任务。
阅读全文