lstm python
时间: 2023-07-14 14:01:30 浏览: 78
以下是一个基本的LSTM的Python实现:
```python
import numpy as np
class LSTM:
def __init__(self, input_size, hidden_size, output_size):
self.hidden_size = hidden_size
# 初始化权重
self.Wf = np.random.randn(input_size + hidden_size, hidden_size)
self.Wi = np.random.randn(input_size + hidden_size, hidden_size)
self.Wc = np.random.randn(input_size + hidden_size, hidden_size)
self.Wo = np.random.randn(input_size + hidden_size, hidden_size)
self.Wy = np.random.randn(hidden_size, output_size)
# 初始化偏差
self.bf = np.zeros((1, hidden_size))
self.bi = np.zeros((1, hidden_size))
self.bc = np.zeros((1, hidden_size))
self.bo = np.zeros((1, hidden_size))
self.by = np.zeros((1, output_size))
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward(self, x, h_prev, c_prev):
# 合并输入和前一个隐藏层状态
input = np.column_stack((h_prev, x))
# 计算遗忘门
f = self.sigmoid(np.dot(input, self.Wf) + self.bf)
# 计算输入门
i = self.sigmoid(np.dot(input, self.Wi) + self.bi)
# 计算新候选值
c_bar = np.tanh(np.dot(input, self.Wc) + self.bc)
# 计算新的细胞状态
c = f * c_prev + i * c_bar
# 计算输出门
o = self.sigmoid(np.dot(input, self.Wo) + self.bo)
# 计算新的隐藏状态
h = o * np.tanh(c)
# 计算输出
output = np.dot(h, self.Wy) + self.by
# 保存状态
self.x = x
self.h_prev = h
self.c_prev = c
return output, h, c
def backward(self, output, y, dh_next, dc_next, learning_rate):
# 计算输出误差
dout = output - y
# 计算Wy和by的梯度
dWy = np.dot(self.h_prev.T, dout)
dby = np.sum(dout, axis=0, keepdims=True)
# 计算dh和dc的梯度
dh = np.dot(dout, self.Wy.T) + dh_next
dc = dc_next
# 计算输出门的梯度
do = dh * np.tanh(self.c_prev)
do = do * (1 - self.sigmoid(np.dot(self.x, self.Wo) + self.bo))
dWo = np.dot(self.x.T, do)
dbo = np.sum(do, axis=0, keepdims=True)
# 计算新候选值的梯度
dc_bar = dh * self.sigmoid(np.dot(self.x, self.Wc) + self.bc)
dc_bar = dc_bar * (1 - np.tanh(np.dot(self.x, self.Wc) + self.bc) ** 2)
dWc = np.dot(self.x.T, dc_bar)
dbc = np.sum(dc_bar, axis=0, keepdims=True)
# 计算输入门的梯度
di = dh * self.tanh(self.c_bar)
di = di * (1 - self.sigmoid(np.dot(self.x, self.Wi) + self.bi))
dWi = np.dot(self.x.T, di)
dbi = np.sum(di, axis=0, keepdims=True)
# 计算遗忘门的梯度
df = dc_prev * self.c_prev
df = df * (1 - self.sigmoid(np.dot(self.x, self.Wf) + self.bf))
dWf = np.dot(self.x.T, df)
dbf = np.sum(df, axis=0, keepdims=True)
# 计算x的梯度
dx = np.dot(di, self.Wi.T) + np.dot(df, self.Wf.T) + \
np.dot(dc_bar, self.Wc.T) + np.dot(do, self.Wo.T)
# 保存梯度
self.dWf = dWf
self.dWi = dWi
self.dWc = dWc
self.dWo = dWo
self.dWy = dWy
self.dbf = dbf
self.dbi = dbi
self.dbc = dbc
self.dbo = dbo
self.dby = dby
# 更新权重和偏差
self.Wf -= learning_rate * self.dWf
self.Wi -= learning_rate * self.dWi
self.Wc -= learning_rate * self.dWc
self.Wo -= learning_rate * self.dWo
self.Wy -= learning_rate * self.dWy
self.bf -= learning_rate * self.dbf
self.bi -= learning_rate * self.dbi
self.bc -= learning_rate * self.dbc
self.bo -= learning_rate * self.dbo
self.by -= learning_rate * self.dby
return dx, dh_prev, dc_prev
```
这个实现包含了前向传播和反向传播的代码。如果你想使用这个LSTM实现,你需要在初始化时指定输入大小、隐藏层大小和输出大小。然后在训练时,你需要传入输入、前一个隐藏状态和前一个细胞状态,然后调用`forward`方法计算输出并返回当前的隐藏状态和细胞状态。接着,你需要计算输出误差并调用`backward`方法计算梯度并更新权重和偏差。最后,你需要将当前的隐藏状态和细胞状态传递到下一个时间步骤。
阅读全文