改为ResNet
时间: 2023-09-16 10:10:01 浏览: 87
好的,以下是使用ResNet-50的代码示例:
```python
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.layers import Dense, Flatten, Dropout
from tensorflow.keras.models import Model
def ResNet50_model(dim, rate, optimizer):
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
x = base_model.output
x = Flatten()(x)
x = Dense(units=dim/2, kernel_initializer='uniform', activation='relu')(x)
x = Dropout(rate/2)(x)
x = Dense(units=dim, kernel_initializer='uniform', activation='relu')(x)
x = Dropout(rate/2)(x)
x = Dense(units=dim, kernel_initializer='uniform', activation='relu')(x)
predictions = Dense(units=7, kernel_initializer='uniform', activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
return model
```
这个模型使用了Keras中的ResNet50预训练模型作为基础模型,然后在其顶部添加了全连接层。同时,为了避免过拟合,我们也加入了Dropout层。在这个模型中,我们使用了ResNet50的预训练权重,并且将其冻结了,不进行微调,只训练新增的全连接层的权重。
阅读全文