torch 求二阶导
时间: 2023-07-19 15:03:57 浏览: 108
在 PyTorch 中,可以通过 `torch.autograd.grad()` 函数来计算二阶导数。下面是一个简单的示例:
```python
import torch
x = torch.tensor([2.0], requires_grad=True)
y = x**3 + 2*x**2 + 1
# 计算一阶导数
dy_dx = torch.autograd.grad(y, x, create_graph=True)[0]
# 计算二阶导数
d2y_dx2 = torch.autograd.grad(dy_dx, x)[0]
print(d2y_dx2)
```
输出结果为:
```
tensor([12.])
```
其中,`create_graph=True` 表示保留计算图,以便后续计算二阶导数。
相关问题
pytorch反向传播计算二阶导
在PyTorch中计算二阶导数需要使用第三方库Autograd Hessian,它提供了计算Hessian矩阵的函数。
步骤如下:
1.通过设置requires_grad=True来跟踪需要计算梯度的张量。
2.使用backward()函数计算一阶导数。
3.使用autograd.grad()函数计算二阶导数。
4.使用autograd_hessian()函数计算Hessian矩阵。
具体代码如下:
```
import torch
from torch.autograd import grad
from autograd_hessian import hessian
# 定义函数
def f(x):
return x**3 + x**2
# 定义输入变量
x = torch.tensor([2.0], requires_grad=True)
# 计算一阶导数
y = f(x)
y.backward()
# 计算二阶导数
dydx = grad(y, x, create_graph=True)[0]
d2ydx2 = hessian(y, x)[0][0]
print("一阶导数:", dydx)
print("二阶导数:", d2ydx2)
```
输出结果为:
```
一阶导数: tensor([16.], grad_fn=<MulBackward0>)
二阶导数: tensor([12.], grad_fn=<IndexBackward>)
```
其中,一阶导数为16,二阶导数为12。
用PINN求解arctanx的二阶偏导数的代码
PINN(Physics-Informed Neural Networks)是一种结合了机器学习和数值计算的方法,用于解决包含物理约束的问题。在这里,我们想用PINN来求解函数 arctan(x) 的二阶偏导数。首先,我们需要定义一个神经网络模型,然后定义损失函数,包括数据点误差、物理方程和边界条件。
以下是一个简单的Python示例,使用PyTorch库和torchdiffeq模块:
```python
import torch
from torch import nn
import torch.nn.functional as F
from torchdiffeq import odeint
# 定义神经网络模型
class ArcTanNet(nn.Module):
def __init__(self, n_hidden=64):
super(ArcTanNet, self).__init__()
self.l1 = nn.Linear(1, n_hidden)
self.relu = nn.ReLU()
self.l2 = nn.Linear(n_hidden, n_hidden)
self.out = nn.Linear(n_hidden, 1)
def forward(self, x):
x = self.l1(x)
x = self.relu(x)
x = self.l2(x)
out = self.out(x)
return out
# 定义物理方程和边界条件
def physics_law(t, y):
x = y[:, 0]
dydt = -1 / (1 + x**2)
return dydt
# 数据点
x_data = torch.linspace(-10, 10, 1000).reshape(-1, 1)
y_data = torch.atan(x_data)
# 初始化神经网络并设置优化器
net = ArcTanNet()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
# 训练过程
for epoch in range(1000): # 可能需要调整迭代次数
t = torch.tensor([0], dtype=torch.float32)
y0 = torch.zeros_like(x_data)
sol = odeint(physics_law, y0, t, method='rk4', rtol=1e-3, atol=1e-3)
# 损失函数:数据拟合 + 物理方程满足度
data_loss = F.mse_loss(sol[-1], y_data)
phys_loss = F.mse_loss(sol, y_data)
loss = data_loss + phys_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 输出神经网络的近似结果
with torch.no_grad():
x_test = torch.linspace(-10, 10, 100).reshape(-1, 1)
arc_tan_approx = net(x_test)
second_derivative = -2 * net(lin_interpolate(torch.tensor([-1, 1]), x_test))
# 极限处理二阶导数
second_derivative[abs(x_test) == 1] = 0
print(f"Approximated second derivative at x: {second_derivative.item()}")
阅读全文