hinge loss
时间: 2023-12-13 18:04:59 浏览: 197
Hinge loss是一种用于支持向量机(SVM)的损失函数,用于衡量模型的预测结果与真实标签之间的差异。Hinge loss的目标是使正确预测的得分高于错误预测的得分,并且高出一个边界值margin。具体而言,Hinge loss通过计算错误类别的评分与正确类别的评分之间的差异来衡量误差。边界值margin的作用是为了使训练出的分类器有更大的把握进行正确分类。因此,Hinge loss的设计目的是让分类器更加专注于整体的分类误差,而不是过分注重单个样本的分类效果。
#### 引用[.reference_title]
- *1* *2* *3* [理解Hinge Loss (折页损失函数、铰链损失函数)](https://blog.csdn.net/jacke121/article/details/90349704)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
try an 'l1' penalty with hinge loss, or 'l1' penalty with squared hinge loss. Does 'l2' work with the squared hinge loss function?
The 'l2' penalty is not compatible with the squared hinge loss function in LinearSVC. The squared hinge loss function is specifically designed to work with the 'l1' penalty.
If you want to use the squared hinge loss function with a penalty, you should use the 'l1' penalty. Here are two examples:
1. 'l1' penalty with hinge loss:
```python
from sklearn.svm import LinearSVC
model = LinearSVC(loss='hinge', penalty='l1')
```
2. 'l1' penalty with squared hinge loss:
```python
from sklearn.svm import LinearSVC
model = LinearSVC(loss='squared_hinge', penalty='l1')
```
Please note that the 'l2' penalty is commonly used with the hinge loss function, but not with the squared hinge loss function.
hinge loss function
Hinge损失函数是一种用于分类问题的损失函数,通常用于支持向量机(SVM)中。它的目标是最小化分类错误的数量,同时最大化正确分类的边界。当样本被正确分类时,损失为,当样本被错误分类时,损失为分类错误的距离。
阅读全文