python中Montecarlo雪球定价的希腊字母计算
时间: 2024-03-30 18:33:36 浏览: 150
WSCC_WSCC潮流计算_MonteCarlo_分布发电_
5星 · 资源好评率100%
在Python中,可以使用NumPy和SciPy等库来进行Monte Carlo雪球定价的希腊字母计算。以下是一些常见希腊字母的计算示例:
1. Delta:
```python
import numpy as np
from scipy.stats import norm
# 计算股票价格路径
def stock_price_path(S, r, sigma, T, N, M):
dt = T / N
prices = np.zeros((M, N+1))
prices[:, 0] = S
for i in range(1, N+1):
eps = np.random.normal(0, 1, M)
prices[:, i] = prices[:, i-1] * np.exp((r - 0.5*sigma**2)*dt + sigma*np.sqrt(dt)*eps)
return prices
# 计算期权Delta
def option_delta(S, K, r, sigma, T, N, M):
dt = T / N
prices = stock_price_path(S, r, sigma, T, N, M)
option_price = np.exp(-r*T) * np.maximum(prices[:, -1] - K, 0)
delta = np.mean(option_price * (prices[:, 1] - prices[:, 0]) / (S * sigma * np.sqrt(dt)))
return delta
# 示例
S = 100
K = 110
r = 0.05
sigma = 0.2
T = 1
N = 100
M = 10000
delta = option_delta(S, K, r, sigma, T, N, M)
print("Delta: ", delta)
```
2. Gamma:
```python
# 计算期权Gamma
def option_gamma(S, K, r, sigma, T, N, M):
dt = T / N
prices = stock_price_path(S, r, sigma, T, N, M)
option_price = np.exp(-r*T) * np.maximum(prices[:, -1] - K, 0)
delta1 = np.mean(option_price * (prices[:, 1] - prices[:, 0]) / (S * sigma * np.sqrt(dt)))
delta2 = np.mean(option_price * (prices[:, 2] - 2*prices[:, 1] + prices[:, 0]) / (S**2 * (dt**2)))
gamma = (delta2 / delta1) * (1 / S)
return gamma
# 示例
S = 100
K = 110
r = 0.05
sigma = 0.2
T = 1
N = 100
M = 10000
gamma = option_gamma(S, K, r, sigma, T, N, M)
print("Gamma: ", gamma)
```
3. Vega:
```python
# 计算期权Vega
def option_vega(S, K, r, sigma, T, N, M):
dt = T / N
prices = stock_price_path(S, r, sigma, T, N, M)
option_price = np.exp(-r*T) * np.maximum(prices[:, -1] - K, 0)
vega = np.mean(option_price * prices[:, 1] * np.sqrt(dt) * norm.pdf((np.log(S/K) + (r + 0.5*sigma**2)*T) / (sigma*np.sqrt(T))))
return vega
# 示例
S = 100
K = 110
r = 0.05
sigma = 0.2
T = 1
N = 100
M = 10000
vega = option_vega(S, K, r, sigma, T, N, M)
print("Vega: ", vega)
```
4. Theta:
```python
# 计算期权Theta
def option_theta(S, K, r, sigma, T, N, M):
dt = T / N
prices = stock_price_path(S, r, sigma, T, N, M)
option_price1 = np.exp(-r*T) * np.maximum(prices[:, -1] - K, 0)
option_price2 = np.exp(-r*(T-dt)) * np.maximum(prices[:, -2] - K, 0)
theta = np.mean((option_price2 - option_price1) / dt)
return theta
# 示例
S = 100
K = 110
r = 0.05
sigma = 0.2
T = 1
N = 100
M = 10000
theta = option_theta(S, K, r, sigma, T, N, M)
print("Theta: ", theta)
```
以上仅为示例,实际应用中需要根据具体模型和期权类型进行相应的计算。
阅读全文