ef forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
时间: 2024-04-24 12:21:53 浏览: 128
这段代码是一个PyTorch模型的forward函数。具体来说,这个模型包含了一些卷积层(cv1, cv2)和一些中间层(m),它的输入是一个张量x,输出是一个经过多个卷积和中间层处理后的张量。
在这个forward函数中,首先通过cv1对输入张量进行卷积操作,然后将结果传入中间层m进行处理,得到y1;再将y1传入m进行处理,得到y2。最后,将x、y1、y2和m(y2)(即将y2再次传入中间层m进行处理的结果)按照通道数进行拼接,然后通过cv2进行卷积,得到最终的输出张量。
在这个过程中,使用了warnings.catch_warnings()来忽略torch 1.9.0版本的一个max_pool2d()函数的警告。
相关问题
class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))这些代码什么意思
这段代码实现了一个SPPF层,用于YOLOv5的目标检测网络。SPPF层是一种空间金字塔池化层,可以在不同尺度上汇聚特征信息,使得网络可以对不同大小的目标进行检测。
具体来说,这个SPPF层的输入是一个大小为(c1, H, W)的特征图,其中c1是输入通道数,H和W是高度和宽度。这个SPPF层首先使用一个1x1的卷积核将输入通道数减半,得到一个大小为(c1/2, H, W)的特征图。然后,对于不同的尺度k,使用最大池化操作在输入特征图上提取池化特征,得到四个不同尺度的特征图,分别为输入特征图、k/2尺度池化特征图、k尺度池化特征图和2k尺度池化特征图。最后将这四个特征图在通道维度上拼接起来,并使用一个1x1的卷积核将通道数变为c2,得到一个大小为(c2, H, W)的特征图作为输出。
在代码实现中,Conv是一个卷积层的封装,MaxPool2d是一个最大池化层的封装,torch.cat是一个在指定维度上拼接张量的函数。注意到在forward函数中,使用了warnings.catch_warnings来忽略torch 1.9.0版本中max_pool2d()函数的警告。
import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] x = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(x.head()) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) def relu(x): output=np.maximum(0, x) return output def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): if activation_choose == 'relu': return relu(x) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output
这段代码存在两个问题:
1. 在import语句中没有使用逗号分隔符,应该在每个import语句之间添加逗号分隔符。
2. 在函数set_xy()的定义中,函数体没有缩进,应该在函数体内部添加缩进。
以下是修改后的代码:
```python
import pandas as pd, warnings
import sklearn.datasets, sklearn.linear_model
import matplotlib, matplotlib.font_manager as fm
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx')
print(data.info())
fig = plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), cmap="YlGnBu", annot=True)
plt.title('相关性分析热力图')
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()
y = data['y']
x = data.drop(['y'], axis=1)
print('************************输出新的特征集数据***************************')
print(x.head())
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
def relu(x):
output=np.maximum(0, x)
return output
def relu_back_propagation(derror_wrt_output,x):
derror_wrt_dinputs = np.array(derror_wrt_output, copy=True)
derror_wrt_dinputs[x <= 0] = 0
return derror_wrt_dinputs
def activated(activation_choose,x):
if activation_choose == 'relu':
return relu(x)
def activated_back_propagation(activation_choose, derror_wrt_output, output):
if activation_choose == 'relu':
return relu_back_propagation(derror_wrt_output, output)
class NeuralNetwork:
def __init__(self, layers_strcuture, print_cost = False):
self.layers_strcuture = layers_strcuture
self.layers_num = len(layers_strcuture)
self.param_layers_num = self.layers_num - 1
self.learning_rate = 0.0618
self.num_iterations = 2000
self.x = None
self.y = None
self.w = dict()
self.b = dict()
self.costs = []
self.print_cost = print_cost
self.init_w_and_b()
def set_learning_rate(self,learning_rate):
self.learning_rate=learning_rate
def set_num_iterations(self, num_iterations):
self.num_iterations = num_iterations
def set_xy(self, input, expected_output):
self.x = input
self.y = expected_output
```
阅读全文