def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)
时间: 2024-04-20 15:25:49 浏览: 117
这段代码是一个 `_make_layer` 方法的实现,用构建 ResNet 的层它接受参数 ``,`planes`,`blocks` 和 `stride`。
首先,它定义了一个变量 `downsample` 为 `None`。如果 `stride` 不等于 1 或者 `self.inplanes` 不等于 `planes * block.expansion`,则会创建一个包含一个卷积层和一个批归一化层的序列,并将其赋值给 `downsample`。
接下来,它定义了一个空列表 `layers`。然后,将一个由 `block(self.inplanes, planes, stride, downsample)` 组成的元素添加到 `layers` 列表中。这个元素是通过调用 `block` 类来创建的,传入的参数是 `self.inplanes`,`planes`,`stride` 和 `downsample`。
接着,通过设置 `self.inplanes = planes * block.expansion` 来更新 `self.inplanes` 的值。
最后,使用循环从 1 到 `blocks-1`,将由 `block(self.inplanes, planes)` 组成的元素添加到 `layers` 列表中。
最后,通过使用 `nn.Sequential(*layers)` 将列表中的元素组合成一个序列,并返回这个序列。
相关问题
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers)
这是一个深度神经网络的类中的一个私有方法,用于构建网络的一层。其中,block 代表网络的基本块,planes 代表输出通道数,blocks 代表构建的基本块数量,stride 代表步长,dilate 代表是否使用膨胀卷积。norm_layer 代表归一化层,downsample 代表下采样层,previous_dilation 代表上一层的膨胀率。
首先,如果 dilate 为 True,就将膨胀率乘以步长,并将步长设为 1。如果步长不为 1,或者输入通道数不等于输出通道数乘以基本块的扩展系数,就构建一个下采样层 downsample。然后,将第一个基本块加入到 layers 列表中,并将输入通道数设为输出通道数乘以基本块的扩展系数。最后,使用 for 循环构建剩下的基本块,并将它们加入到 layers 列表中。最后,返回一个 nn.Sequential 对象,其中包含所有的基本块。
代码解析: class BasicBlock(nn.Layer): expansion = 1 def init(self, in_channels, channels, stride=1, downsample=None): super().init() self.conv1 = conv1x1(in_channels, channels) self.bn1 = nn.BatchNorm2D(channels) self.relu = nn.ReLU() self.conv2 = conv3x3(channels, channels, stride) self.bn2 = nn.BatchNorm2D(channels) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet45(nn.Layer): def init(self, in_channels=3, block=BasicBlock, layers=[3, 4, 6, 6, 3], strides=[2, 1, 2, 1, 1]): self.inplanes = 32 super(ResNet45, self).init() self.conv1 = nn.Conv2D( in_channels, 32, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn1 = nn.BatchNorm2D(32) self.relu = nn.ReLU() self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4]) self.out_channels = 512 def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: # downsample = True downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False), nn.BatchNorm2D(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) return x
这是一个 PyTorch 实现的 ResNet 模型,包括 BasicBlock 类和 ResNet45 类。
BasicBlock 类是 ResNet 中的基本模块,由两个卷积层和一个残差连接组成。expansion=1 表示残差连接的扩张率为 1。输入特征图 x 通过 conv1、bn1、relu、conv2、bn2、残差连接和 relu 激活函数后得到输出特征图 out。
ResNet45 类继承自 nn.Layer 类,包含了 ResNet45 模型的结构。该模型包含五个阶段,每个阶段包含若干 BasicBlock 模块。输入特征图先经过一个卷积层、bn1 和 relu 激活函数,然后进入五个阶段,最后输出特征图 x。每个阶段中的 BasicBlock 模块数量由 layers 参数指定,步长由 strides 参数指定。_make_layer 方法用于构建一个阶段,其中 planes 参数表示输出特征图的通道数,stride 参数表示步长。如果步长不为 1 或输入输出特征图通道数不同时,需要进行下采样,即 downsample,downsample 是一个包含 Conv2D 和 BatchNorm2D 的序列。
这个模型的输出特征图通道数为 512,可以用于分类、检测、分割等任务。
阅读全文