写一个pytorch代码:使用resnet18加SENet对故障进行特征分类,其中,resnet18的第一层通道·从16开始
时间: 2023-11-16 22:05:38 浏览: 215
基于ResNet-18的CIFAR-10图像分类.zip
这里是一个使用PyTorch实现ResNet18和SENet的代码,用于故障特征分类:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SEBlock(nn.Module):
def __init__(self, channels, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(channels, channels // reduction)
self.fc2 = nn.Linear(channels // reduction, channels)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc1(y)
y = F.relu(y)
y = self.fc2(y)
y = F.sigmoid(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class ResNet18(nn.Module):
def __init__(self, in_channels=16, num_classes=2):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 2)
self.layer2 = self._make_layer(128, 2, stride=2)
self.layer3 = self._make_layer(256, 2, stride=2)
self.layer4 = self._make_layer(512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, planes, blocks, stride=1):
downsample = None
if stride != 1 or planes != 64:
downsample = nn.Sequential(
nn.Conv2d(64, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes)
)
layers = []
layers.append(nn.Conv2d(64, planes, kernel_size=3, stride=stride, padding=1, bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(SEBlock(planes))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
使用时,可以像这样创建一个ResNet18和SENet的结合模型:
```python
model = ResNet18(in_channels=16, num_classes=10)
```
其中,`in_channels=16`表示输入图片的通道数为16,`num_classes=10`表示分类的类别数为10。可以根据需要进行修改。
阅读全文