如何用senet搭配神经网络模型框架搭建一个图像识别模型,并进行分类处理,并且保存模型,写一个python文件能够让这个模型打印出分类的结果
时间: 2024-02-05 13:14:21 浏览: 100
首先,我们需要导入必要的库,包括PyTorch,torchvision和torchsummary。然后,我们可以定义一个SENet模型。这里我们使用一个预训练的SENet模型,称为SENet50。我们将其加载,并替换其最后一层全连接层以适应我们的分类任务。
```
import torch
import torch.nn as nn
import torchvision.models as models
from torchsummary import summary
class SENetModel(nn.Module):
def __init__(self, num_classes):
super(SENetModel, self).__init__()
self.num_classes = num_classes
self.senet = models.senet50(pretrained=True)
self.senet.fc = nn.Linear(self.senet.fc.in_features, num_classes)
def forward(self, x):
x = self.senet(x)
return x
# 打印模型结构
model = SENetModel(num_classes=10)
summary(model, input_size=(3, 224, 224))
```
接下来,我们将定义一个函数来加载和预处理我们的数据集。在这个例子中,我们将使用CIFAR-10数据集。我们将对图像进行归一化和随机水平翻转。我们还将创建一个数据加载器,以便我们可以在训练期间批量加载数据。
```
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
def get_data_loaders(batch_size=64):
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
train_dataset = CIFAR10(root='./data', train=True, download=True, transform=transform_train)
test_dataset = CIFAR10(root='./data', train=False, download=True, transform=transform_test)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
return train_loader, test_loader
# 加载数据集
train_loader, test_loader = get_data_loaders(batch_size=64)
```
接下来,我们将定义一个函数来训练我们的模型。我们将使用交叉熵损失函数和随机梯度下降优化器。我们还将记录每个纪元的训练和测试损失,并在每个纪元结束时打印它们。最后,我们将保存模型以供以后使用。
```
def train_model(model, train_loader, test_loader, num_epochs=10, learning_rate=0.001):
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4)
train_losses = []
test_losses = []
for epoch in range(num_epochs):
train_loss = 0.0
test_loss = 0.0
# 训练模型
model.train()
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
# 测试模型
model.eval()
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item()
train_loss /= len(train_loader)
test_loss /= len(test_loader)
train_losses.append(train_loss)
test_losses.append(test_loss)
print('Epoch [{}/{}], Train Loss: {:.4f}, Test Loss: {:.4f}'.format(epoch+1, num_epochs, train_loss, test_loss))
# 保存模型
torch.save(model.state_dict(), 'se_resnet50.pth')
return train_losses, test_losses
# 训练模型
model = SENetModel(num_classes=10)
train_losses, test_losses = train_model(model, train_loader, test_loader, num_epochs=10, learning_rate=0.001)
```
最后,我们可以定义一个函数来加载保存的模型,并使用它来对图像进行分类。在这个例子中,我们将使用一张测试图像来测试我们的模型,并打印出分类结果。
```
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
def load_image(image_path):
image = Image.open(image_path)
image = image.resize((224, 224))
image = np.array(image)
image = np.transpose(image, (2, 0, 1))
image = image.astype(np.float32) / 255.0
image = np.expand_dims(image, axis=0)
return image
def predict_image_class(model, image_path):
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
image = load_image(image_path)
image_tensor = torch.from_numpy(image)
model.eval()
with torch.no_grad():
outputs = model(image_tensor)
_, predicted = torch.max(outputs.data, 1)
class_name = class_names[predicted[0]]
return class_name
# 加载模型
model = SENetModel(num_classes=10)
model.load_state_dict(torch.load('se_resnet50.pth'))
# 预测图像类别
image_path = 'test_image.jpg'
class_name = predict_image_class(model, image_path)
print('Predicted class:', class_name)
# 显示图像
image = Image.open(image_path)
plt.imshow(image)
plt.show()
```
阅读全文