如何用senet搭配vgg16神经网络模型框架搭建一个图像识别模型,并进行分类并保存模型
时间: 2024-02-05 13:14:17 浏览: 83
首先,你需要安装 PyTorch 和 torchvision 库,然后按照以下步骤构建模型:
1. 导入必要的库和模块
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
```
2. 定义模型结构
```python
class VGG16(nn.Module):
def __init__(self, num_classes=1000):
super(VGG16, self).__init__()
self.features = models.vgg16(pretrained=True).features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
self.senet = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.features(x)
x = self.senet(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
3. 定义数据预处理方式
```python
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
```
4. 加载数据集
```python
trainset = torchvision.datasets.ImageFolder(root='./data/train', transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=4)
testset = torchvision.datasets.ImageFolder(root='./data/test', transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=4)
```
5. 定义损失函数和优化器
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
6. 训练模型
```python
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
```
7. 保存模型
```python
torch.save(model.state_dict(), 'vgg16_senet.pth')
```
这样,你就成功地用 VGG16 和 SENet 搭建了一个图像识别模型,并进行了分类并保存了模型。
阅读全文