senet 图像分类
时间: 2023-12-04 11:36:59 浏览: 116
图像分类
SENet是一种用于图像分类的深度神经网络模型,它引入了一种称为Squeeze-and-Excitation(SE)模块的新型网络结构,可以自适应地调整每个通道的权重,从而提高模型的性能。
SE模块包括两个步骤:第一步是通过全局平均池化操作来获取每个通道的特征图,第二步是通过两个全连接层来学习每个通道的权重。这些权重被用来重新加权每个通道的特征图,从而增强有用的特征并抑制无用的特征。
SENet在多个图像分类任务上都取得了优异的性能,比如ImageNet、CIFAR-10和CIFAR-100等数据集。
阅读全文