import torch.backends.cudnn as nn
时间: 2024-06-05 13:11:52 浏览: 113
`torch.backends.cudnn` 是 PyTorch 中与 cuDNN 库相关的后端模块,用于提高在 CUDA 上的深度神经网络计算速度。其中,`nn` 为别名,可以简化调用。常见的使用方式是在 PyTorch 中的训练过程中,使用 `nn.benchmark = True` 来自动寻找最优的卷积算法,从而提高训练速度。
相关问题
解释import os import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from nets import get_model_from_name from utils.callbacks import LossHistory from utils.dataloader import DataGenerator, detection_collate from utils.utils import (download_weights, get_classes, get_lr_scheduler, set_optimizer_lr, show_config, weights_init) from utils.utils_fit import fit_one_epoch
这段代码是引入了一些Python模块和自定义的模块,包括:
- os:Python标准库中的操作系统接口模块,提供了访问操作系统功能的接口;
- numpy:Python中的数值计算库,提供了多维数组和矩阵运算功能;
- torch:PyTorch深度学习框架的主要模块,提供了张量操作、自动求导、模型构建、模型训练等功能;
- torch.backends.cudnn:PyTorch的CUDA后端库,提供了针对GPU的高性能计算功能;
- torch.distributed:PyTorch的分布式训练模块,提供了分布式训练所需的通信和同步功能;
- torch.nn:PyTorch的神经网络模块,提供了各种常用的神经网络层和模型;
- torch.optim:PyTorch的优化器模块,提供了多种常用的优化算法;
- DataLoader:PyTorch中的数据加载器,用于批次加载数据;
- nets:自定义的模块,用于加载模型结构;
- callbacks:自定义的模块,用于定义训练过程中的回调函数;
- dataloader:自定义的模块,用于定义数据加载器;
- utils:自定义的模块,提供了各种常用的工具函数;
- utils_fit:自定义的模块,提供了训练模型的函数。
这些模块都是深度学习中常用的模块,用于加载数据、定义模型、训练模型等。在使用这些模块之前,需要使用pip或conda等工具安装相应的库和框架。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文