torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True
时间: 2023-09-07 07:15:45 浏览: 265
`torch.backends.cudnn.benchmark = True` 和 `torch.backends.cudnn.deterministic = True` 是用于设置PyTorch在使用CUDA加速时的一些优化选项。
- `torch.backends.cudnn.benchmark = True` :当设置为True时,PyTorch会在每次运行时自动寻找最适合当前硬件的卷积实现算法,并进行优化。这样可以加速模型的训练和推断过程。然而,由于寻找最佳算法需要额外的计算开销,因此在输入大小不变的情况下,首次运行可能会比后续运行慢一些。如果输入大小经常变化,建议将此选项设为True,以获得最佳性能。
- `torch.backends.cudnn.deterministic = True` :当设置为True时,PyTorch的卷积操作将以确定性模式运行,即给定相同的输入和参数,输出将始终相同。这对于确保结果的可重复性很重要,尤其是在进行模型训练和验证时。然而,由于确定性模式可能会带来一些性能损失,因此在不需要结果可重复性的情况下,可以将此选项设置为False。
这两个选项可以根据具体场景和需求进行设置。`torch.backends.cudnn.benchmark` 用于自动选择最佳卷积实现算法以提高性能,而 `torch.backends.cudnn.deterministic` 用于确保结果的可重复性。根据你的需求,你可以根据情况启用或禁用它们。
相关问题
torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True
这两行代码是用于设置PyTorch在使用CUDA加速时的一些参数。
`torch.backends.cudnn.benchmark`默认为False,表示每次运行时都会去寻找最优的卷积算法来提升性能,但这样会导致每次结果略有不同。
`torch.backends.cudnn.deterministic`默认为False,表示结果会尽可能保持确定性,但这样会导致一些性能上的损失。
当需要确保每次运行的结果一致时,我们可以将`torch.backends.cudnn.benchmark`设置为False,同时将`torch.backends.cudnn.deterministic`设置为True。
torch.manual_seed(4321) # reproducible torch.cuda.manual_seed_all(4321) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # Can change it to False --> default: False torch.backends.cudnn.enabled = True
这是一些用于设置PyTorch运行时的随机数种子和CUDA加速库的设置。torch.manual_seed(4321)设置CPU随机数种子,torch.cuda.manual_seed_all(4321)设置GPU随机数种子,保证每次运行程序生成的随机数一致,方便调试和结果复现。torch.backends.cudnn.benchmark = False是为了禁用cudnn的自动调参功能,以保证结果的稳定性和可重复性。torch.backends.cudnn.deterministic = True是为了让cudnn使用确定性算法,从而确保每次运行结果相同。torch.backends.cudnn.enabled = True是为了启用CUDA加速库的使用。
阅读全文