我希望使用cuda加速,请修改这段代码device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = ShuffleNet().to(device)
时间: 2024-10-13 15:18:06 浏览: 26
如果你想利用CUDA进行并行计算来加速模型训练,你可以按照以下步骤修改代码:
首先,在检查GPU可用性之前导入`torch.backends.cudnn`模块,这将启用CUDA中的自动混合精度运算库,通常能提高性能:
```python
import torch.backends.cudnn as cudnn
# 然后,设置设备为CUDA,如果可用
cudnn.benchmark = True # 设置 cudnn 的自动调整模式以优化性能
device = torch.device('cuda' if torch.cuda.is_available() and not torch.cuda.deterministic else 'cpu') # 如果有GPU并且不是在做调试确定性的测试
model = ShuffleNet()
model = model.to(device) # 将模型转移到选定的设备上
```
在这个修改后的版本中,`cudnn.benchmark=True`会让cuDNN在运行过程中自我优化算子的选择和执行路径,提高性能。`not torch.cuda.deterministic`是为了避免在调试阶段因使用随机化算法导致的结果一致性问题。
相关问题
use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor device = torch.device("cpu") #使用GPU进行训练 from torch.autograd import Variable from replay_buffer import ReplayMemory, Transition # set up matplotlib is_ipython = 'inline' in matplotlib.get_backend() if is_ipython: from IPython import display #plt.ion() use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor device = torch.device("cpu")把这段代码改成CPU训练
您可以像这样将上述代码更改为在CPU上进行训练:
```
import torch
from torch.autograd import Variable
from replay_buffer import ReplayMemory, Transition
device = torch.device("cpu") # 使用CPU进行训练
# 设置matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
from IPython import display
# 定义FloatTensor
FloatTensor = torch.FloatTensor
# 创建replay buffer
memory = ReplayMemory(10000)
# 将模型和优化器移动到CPU上
model = DQN().to(device)
optimizer = optim.Adam(model.parameters())
# 定义状态转换函数
def state_to_tensor(state):
return FloatTensor([state])
# 训练模型
for i in range(num_episodes):
state = env.reset()
for t in count():
# 获取动作
action = select_action(state)
# 执行动作并获取下一状态、奖励、是否结束
next_state, reward, done, _ = env.step(action.item())
# 转换状态和动作为张量
state_tensor = state_to_tensor(state)
action_tensor = LongTensor([action])
next_state_tensor = state_to_tensor(next_state)
# 存储状态转换
memory.push(state_tensor, action_tensor, next_state_tensor, reward)
# 更新状态
state = next_state
# 训练模型
optimize_model()
if done:
break
```
这里我们将使用CPU进行训练,所以我们将`device`设为`torch.device("cpu")`;将`FloatTensor`设为`torch.FloatTensor`即可。同时,我们还需要将模型和优化器移动到CPU上,可以使用`to`方法将它们移动到CPU上。
if torch.cuda.is_available(): torch.set_default_tensor_type(torch.cuda.FloatTensor) print("using cuda:", torch.cuda.get_device_name(0)) pass device = torch.device("cuda" if torch.cuda.is_available() else "cpu")这段代码是什么意思
这段代码的作用是,如果当前设备有可用的CUDA,则将默认的张量类型设置为CUDA浮点张量并输出使用的CUDA设备的名称。然后,它将设备设置为CUDA设备(如果有)或CPU。
具体来说:
- `torch.cuda.is_available()`:返回一个布尔值,表示当前设备是否有可用的CUDA。
- `torch.set_default_tensor_type(torch.cuda.FloatTensor)`:将默认的张量类型设置为CUDA浮点张量。
- `print("using cuda:", torch.cuda.get_device_name(0))`:输出使用的CUDA设备的名称。
- `device = torch.device("cuda" if torch.cuda.is_available() else "cpu")`:将设备设置为CUDA设备(如果有)或CPU。
阅读全文