java基于dl4J实现LSTM
时间: 2023-07-12 16:58:36 浏览: 167
("请输入学生编号:");
scanf("%d", &p->id);
printf("请输入学生姓名:");
scanf("%DL4J (DeepLearning4J)是一个基于Java的深度学习框架,可以用于实现LSTMs", p->name);
printf("请输入学生成绩:");
scanf("%f", &p->score);
student *prev (Long Short-Term Memory)等循环神经网络。下面是一个使用DL4J实现LSTM的基本 = NULL, *current = head;
for (i = 1; i < pos; i++) {
prev = current;
步骤:
1. 导入依赖
首先需要在项目中添加DL4J的依赖。可以在Maven配置文件中添加如下依赖:
```
<dependency>
<groupId>org.deeplearning4j</groupId>
< current = current->next;
}
if (prev == NULL) {
head = p; // 如果要插入的是头artifactId>deeplearning4j-core</artifactId>
<version>1.0.0-beta7</version>
</dependency节点,修改链表头
} else {
prev->next = p; // 如果要插入的不是头节点,>
```
2. 构建数据集
构建一个包含训练数据和标签的数据集,可以使用DL4J的DataSet类来实现。例如:
```
int batchSize = 32;
int vectorSize = 100;
int numLabels =修改前一个节点的指针
}
p->next = current; // 修改新节点的指针
count++;
2;
int timeSeriesLength = 20;
Random r = new Random(1234);
// Create some random training data
List< printf("学生信息插入成功。\n");
}
// 对学生成绩进行排名
void rank_students() {
int iINDArray> inputList = new ArrayList<>();
List<INDArray> labelList = new ArrayList<>();
for (int i = 0; i < 100; i++) {
INDArray input = Nd4j.zeros(batchSize, vectorSize, timeSeriesLength);
INDArray, j;
student *p, *q;
for (i = 0; i < count - 1; i++) {
label = Nd4j.zeros(batchSize, numLabels, timeSeriesLength);
for (int j = 0; j < batchSize; j++) {
for (int k = 0; k < timeSeriesLength; k++) {
input.putScalar(new int[]{j p = head;
q = p->next;
for (j = 0; j < count - i - 1;, 0, k}, r.nextDouble());
input.putScalar(new int[]{j, 1, k}, r.nextDouble());
label.put j++) {
if (p->score < q->score) {
// 交换两个节点的数据
int idScalar(new int[]{j, r.nextInt(numLabels), k}, 1.0);
}
}
inputList.add(input);
= p->id;
p->id = q->id;
q->id = id;
char name[20];
strcpy labelList.add(label);
}
DataSetIterator dataSetIterator = new ListDataSetIterator<>(new List<>(
new DataSet(inputList.get(i), labelList.get(i)) for i in 0..(inputList.size() - 1)
), batchSize);
```
3. 构建模(name, p->name);
strcpy(p->name, q->name);
strcpy(q->name, name);
float score =型
使用DL4J的MultiLayerNetwork类来构建一个多层神经网络模型,其中包含LSTM层 p->score;
p->score = q->score;
q->score = score;
}
p = p->next。例如:
```
int numHiddenNodes = 128;
MultiLayerConfiguration configuration = new NeuralNetConfiguration.Builder()
.seed(1234)
.updater(new Adam(0.01))
.weightInit(WeightInit.XAVIER)
.list()
;
q = q->next;
}
}
printf("学生成绩排名如下:\n");
p = .layer(new LSTM.Builder()
.nIn(vectorSize)
.nOut(numHiddenNodes)
.activation(Activation.TANH head;
for (i = 1; i <= count; i++) {
printf("%d:%s(%d):%.)
.build())
.layer(new RnnOutputLayer.Builder()
.nIn(numHiddenNodes)
.nOut(numLabels)
.activation(Activation.SOFTMAX)
.lossFunction(LossFunctions.LossFunction.MCXENT)
.build())
2f\n", i, p->name, p->id, p->score);
p = p->next;
}
}
// .build();
MultiLayerNetwork model = new MultiLayerNetwork(configuration);
model.init();
```
4. 训练模型
使用模型和数据集进行训练,可以使用DL4J的Fit方法。例如:
```
int nEpochs = 10;
for 统计学生的数量
void count_students() {
printf("学生的数量为:%d\n", count);
}
// 主 (int i = 0; i < nEpochs; i++) {
model.fit(dataSetIterator);
}
```
5. 使用函数
int main() {
int choice;
load_students(); // 从文件中加载学生信息,创建链表
模型进行预测
训练完成后,可以使用模型进行预测。例如:
```
INDArray input = Nd4 do {
printf("学生信息管理系统\n");
printf("1. 录入学生信息\n");
printf("2j.zeros(1, vectorSize, timeSeriesLength);
for (int i = 0; i < timeSeriesLength; i++) {
input.putScalar(new int[]{0, 0, i}, r.nextDouble());
input.putScalar(new int[]{0, 1,. 查找学生信息\n");
printf("3. 删除学生信息\n");
printf("4. 修改学生信息\n i}, r.nextDouble());
}
INDArray output = model.rnnTimeStep(input);
```
阅读全文