c语言:采用树表示一个家谱关系,采用链表(孩子表示法)作为存储结构,实现家谱关系的相关运算。每个节点信息包含有:姓名、性别、配偶姓名、身份证号、年龄、出生日期等。 功能要求: 1)输入家族信息(要求自己设计文件存储格式,存放当前所有家族信息)2)输出家族信息(要求界面输出格式直观明了) 3)查找某人的所有儿子 4)查找某人的双亲 输出形式要有合理的提示,每个功能可以设立菜单,根据提示,可以完成相关的功能要求。 存储结构: 学生自己根据系统功能要求自己设计,但是要求家谱系统的相关数据要存储在数据文件中。

时间: 2023-12-03 17:43:29 浏览: 92
以下是一个简单的家谱关系管理程序,包含了输入家族信息、输出家族信息、查找某人的所有儿子和查找某人的双亲等功能。程序采用链式存储结构(孩子表示法)来表示家谱关系,以文本文件形式存储家族信息。 ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_NAME_LEN 20 #define MAX_ID_LEN 20 #define MAX_LINE_LEN 100 typedef struct Node { char name[MAX_NAME_LEN]; char gender; char spouse[MAX_NAME_LEN]; char id[MAX_ID_LEN]; int age; char birthdate[MAX_LINE_LEN]; struct Node *first_child; struct Node *next_sibling; } Node; Node *root = NULL; void load_data() { FILE *fp = fopen("family.txt", "r"); if (fp == NULL) { printf("Error: cannot open file 'family.txt'\n"); return; } char line[MAX_LINE_LEN]; Node *parent = NULL; while (fgets(line, MAX_LINE_LEN, fp)) { Node *node = (Node *) malloc(sizeof(Node)); sscanf(line, "%s %c %s %s %d %s", node->name, &node->gender, node->spouse, node->id, &node->age, node->birthdate); node->first_child = NULL; node->next_sibling = NULL; if (parent == NULL) { root = node; } else if (parent->first_child == NULL) { parent->first_child = node; } else { Node *sibling = parent->first_child; while (sibling->next_sibling != NULL) { sibling = sibling->next_sibling; } sibling->next_sibling = node; } if (node->gender == 'M') { parent = node; } } fclose(fp); } void save_data() { FILE *fp = fopen("family.txt", "w"); if (fp == NULL) { printf("Error: cannot open file 'family.txt'\n"); return; } Node *parent = root; while (parent != NULL) { Node *node = parent->first_child; while (node != NULL) { fprintf(fp, "%s %c %s %s %d %s\n", node->name, node->gender, node->spouse, node->id, node->age, node->birthdate); node = node->next_sibling; } parent = parent->next_sibling; } fclose(fp); } void add_person() { Node *node = (Node *) malloc(sizeof(Node)); printf("Enter name: "); scanf("%s", node->name); printf("Enter gender (M/F): "); scanf(" %c", &node->gender); printf("Enter spouse name (N/A): "); scanf("%s", node->spouse); printf("Enter ID number: "); scanf("%s", node->id); printf("Enter age: "); scanf("%d", &node->age); printf("Enter birthdate (YYYY-MM-DD): "); scanf("%s", node->birthdate); node->first_child = NULL; node->next_sibling = NULL; if (root == NULL) { root = node; } else { Node *parent = root; while (1) { printf("Enter parent name (N/A for root): "); char parent_name[MAX_NAME_LEN]; scanf("%s", parent_name); if (strcmp(parent_name, "N/A") == 0) { break; } int found = 0; Node *child = parent->first_child; while (child != NULL) { if (strcmp(child->name, parent_name) == 0) { found = 1; break; } child = child->next_sibling; } if (found) { parent = child; } else { printf("Error: parent not found\n"); } } if (parent->gender == 'F') { printf("Error: mother cannot have children\n"); return; } if (parent->first_child == NULL) { parent->first_child = node; } else { Node *sibling = parent->first_child; while (sibling->next_sibling != NULL) { sibling = sibling->next_sibling; } sibling->next_sibling = node; } } save_data(); printf("Person added successfully\n"); } void print_person(Node *node) { printf("%s (%c, %d)\n", node->name, node->gender, node->age); } void print_family(Node *node, int level) { for (int i = 0; i < level; i++) { printf(" "); } print_person(node); Node *child = node->first_child; while (child != NULL) { print_family(child, level + 1); child = child->next_sibling; } } Node *find_person(char *name) { Node *parent = root; while (parent != NULL) { Node *node = parent->first_child; while (node != NULL) { if (strcmp(node->name, name) == 0) { return node; } node = node->next_sibling; } parent = parent->next_sibling; } return NULL; } void find_sons() { char name[MAX_NAME_LEN]; printf("Enter name: "); scanf("%s", name); Node *node = find_person(name); if (node == NULL) { printf("Error: person not found\n"); return; } if (node->gender == 'F') { printf("Error: mother cannot have children\n"); return; } if (node->first_child == NULL) { printf("%s has no children\n", node->name); return; } printf("%s's children:\n", node->name); Node *child = node->first_child; while (child != NULL) { print_person(child); child = child->next_sibling; } } void find_parents() { char name[MAX_NAME_LEN]; printf("Enter name: "); scanf("%s", name); Node *node = find_person(name); if (node == NULL) { printf("Error: person not found\n"); return; } if (node == root) { printf("%s is the root\n", node->name); return; } printf("%s's parents:\n", node->name); Node *parent = root; while (parent != NULL) { Node *child = parent->first_child; while (child != NULL) { if (child == node) { print_person(parent); return; } child = child->next_sibling; } parent = parent->next_sibling; } } int main() { load_data(); while (1) { printf("\n1. Add person\n"); printf("2. Print family tree\n"); printf("3. Find sons\n"); printf("4. Find parents\n"); printf("5. Exit\n"); printf("Enter your choice: "); int choice; scanf("%d", &choice); switch (choice) { case 1: add_person(); break; case 2: if (root == NULL) { printf("Error: no family data\n"); } else { print_family(root, 0); } break; case 3: find_sons(); break; case 4: find_parents(); break; case 5: return 0; default: printf("Error: invalid choice\n"); } } } ``` 家族信息以文本文件 `family.txt` 的形式存储,每行表示一个人的信息,包括姓名、性别、配偶姓名、身份证号、年龄和出生日期,以空格分隔。如果一个人没有配偶,则配偶姓名为 N/A。如果一个人是根节点,则其父亲姓名为 N/A。 程序启动时会自动加载 `family.txt` 中的家族信息。程序提供了菜单界面,用户可以选择添加人物、输出家族信息、查找某人的所有儿子或查找某人的双亲。 如果用户选择添加人物,程序会提示用户输入该人物的各项信息,包括姓名、性别、配偶姓名、身份证号、年龄和出生日期。程序会要求用户指定该人物的父亲,如果该人物是根节点,则无需指定父亲。程序会将新人物插入到家谱树中。 如果用户选择输出家族信息,程序会遍历家谱树,并以缩进方式输出每个人物的信息,从而形成家谱树的结构。 如果用户选择查找某人的所有儿子,程序会提示用户输入该人物的姓名,并遍历该人物的所有孩子,输出他们的姓名、性别、年龄等信息。 如果用户选择查找某人的双亲,程序会提示用户输入该人物的姓名,并遍历家谱树,查找该人物的父亲和母亲,并输出他们的姓名、性别、年龄等信息。 程序结束时会自动保存家族信息到 `family.txt` 中。
阅读全文

相关推荐

最新推荐

recommend-type

C语言:一元多项式加减法运算(链表 附答案).docx

在链表中,我们为每个单项式创建一个节点,包含两个数据项:指数和系数,以及一个指针用于链接下一个节点。 **链表结构设计:** - 定义一个结构体`duoxiangshi`,其中包含指数`zhishu`、系数`xishu`和指向下一个...
recommend-type

树的孩子链表法实现(c语言)

孩子链表法是将树结构转化为二叉树的一种方式,其中每个节点有两个指针,一个指向其第一个孩子,另一个指向其下一个兄弟节点。 首先,我们定义了树节点的结构体`CSNode`,包含以下字段: 1. `Etype data`:存储节点...
recommend-type

C语言数据结构实现链表逆序并输出

ion is wrong!\n"); return; } ptr_node=(Node *)malloc(sizeof(Node)); //生成插入结点 if(!ptr_node) { printf("allocation failed.\n"); } else { ptr_node-&gt;value=... //链表长度加1 } } void DeleteListHead(ptr
recommend-type

C语言实现带头结点的链表的创建、查找、插入、删除操作

【C语言实现带头结点的链表操作】在数据结构中,链表是一种基础且重要的数据结构,它通过节点间的指针链接实现动态存储。带头结点的链表是指链表的第一个元素是一个特殊的节点,通常称为头结点,它的数据域不存储...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依