matlab实现随机输入噪声的粒子滤波代码
时间: 2023-12-06 13:02:32 浏览: 85
lizilvbo.zip_粒子滤波的MATLAB实现
下面是一个简单的MATLAB代码实现,用于演示随机输入噪声的粒子滤波:
```matlab
function [estimated_state] = particle_filter(num_particles, state_dim, observation_dim, transition_fn, observation_fn, initial_state, observations, noise_std)
weights = ones(num_particles, 1) / num_particles;
particles = repmat(initial_state, num_particles, 1);
for t = 1:length(observations)
% Resampling
if 1 / sum(weights .^ 2) < num_particles / 2
indexes = randsample(num_particles, num_particles, true, weights);
particles = particles(indexes, :);
weights = ones(num_particles, 1) / num_particles;
end
% Particle filtering
for i = 1:num_particles
% State transition
particles(i, :) = transition_fn(particles(i, :)) + normrnd(0, noise_std, 1, state_dim);
% Observation update
weights(i) = weights(i) * observation_fn(observations(t), particles(i, :), noise_std);
end
weights = weights / sum(weights);
end
estimated_state = weights' * particles;
end
% Example usage
num_particles = 1000;
state_dim = 2;
observation_dim = 1;
noise_std = 0.1;
initial_state = [0, 0];
observations = [1, 2, 3, 4, 5];
transition_fn = @(x) [x(1) + normrnd(0, noise_std), x(2) + normrnd(0, noise_std)];
observation_fn = @(y, x, noise_std) exp(-((y - x(1)) ^ 2) / (2 * noise_std ^ 2));
estimated_state = particle_filter(num_particles, state_dim, observation_dim, transition_fn, observation_fn, initial_state, observations, noise_std);
disp(['Estimated state: [' num2str(estimated_state) ']']);
```
这个MATLAB代码实现了一个简单的粒子滤波算法,用于估计一个具有两个状态维度和一个观测维度的非线性系统的状态。在此示例中,我们使用了一个简单的状态转移函数和观测函数,并为系统引入了高斯噪声。
阅读全文