LM拟合matlab应用
时间: 2024-12-31 15:17:17 浏览: 14
### Levenberg-Marquardt Algorithm Fitting in MATLAB Example Tutorial
The Levenberg-Marquardt algorithm provides an effective approach for solving non-linear least squares problems. In MATLAB, this can be achieved using built-in functions such as `lsqcurvefit` or by implementing custom code that leverages optimization toolboxes.
#### Using Built-In Function lsqcurvefit
MATLAB's Optimization Toolbox offers the function `lsqcurvefit`, which supports specifying the 'levenberg-marquardt' method directly through its options parameter:
```matlab
% Define model function y = f(x,p), where p contains parameters to fit.
fun = @(p,xdata) p(1)*exp(-p(2)*xdata);
% Initial guess for parameters
initialParams = [1; 0];
% Data points
xData = linspace(0, 4);
yData = fun([3, 2], xData) + randn(size(xData))*0.1;
options = optimoptions('lsqcurvefit', 'Algorithm', 'levenberg-marquardt');
[pOptimized, resnorm] = lsqcurvefit(fun, initialParams, xData, yData, [], [], options);
disp(['Optimized Parameters:', num2str(pOptimized')]);
```
This script demonstrates how one might apply LM fitting on exponential decay data with added Gaussian noise[^1].
For more complex models requiring manual implementation of gradients or Hessians, consider writing a dedicated objective function alongside setting up appropriate stopping criteria within the optimizer settings.
阅读全文
相关推荐


















