"""各区域二手房房源数量""" groups_area = df["id"].groupby(df["areaName"]) count_area = groups_area.count() count_area.index.name = "" fig = plt.figure(figsize=(12,7)) ax = fig.add_subplot(111) ax.set_ylabel("房源数量(套)",fontsize=14) ax.set_title("各区域二手房房源数量",fontsize=18) count_area.sort_values().plot(kind="bar",fontsize=12) 步骤6:二手房单价Top20图 通过条形图查看二手房单价最高的20个房源。 参照下面的提示补全缺失的代码: # 仿照上面的语句,绘制二手房单价最高的20个房源水平柱状图

时间: 2023-11-08 11:05:53 浏览: 141
请将代码补充如下: ```python fig = plt.figure(figsize12,7)) ax = fig.add_subplot(111) ax.set_ylabel("单价(元/平米)",fontsize=14) ax.set_title("二手房单价Top20",fontsize=18) df_sorted = df.sort_values(by="unitPriceValue", ascending=False) df_sorted[:20].plot(x="communityName", y="unitPriceValue", kind="barh", ax=ax, fontsize=12) ``` 这样就可以绘制二手房单价最高的20个房源的水平柱状图了。
相关问题

groups_unitprice_area = df["unitPriceValue"].groupby(df["areaName"]) #数据分组、数据运算和聚合 mean_unitprice = groups_unitprice_area.mean() mean_unitprice.index.name = "" fig = plt.figure(figsize=(12,7)) ax = fig.add_subplot(111) ax.set_ylabel("单价(元/平米)",fontsize=14) ax.set_title("各区域二手房平均单价",fontsize=18)什么意思

这段代码的意思是,首先根据二手房的区域名称对二手房的单价进行分组,然后计算每个区域的平均单价。`df["unitPriceValue"]`表示选取DataFrame中的"unitPriceValue"列,`df["areaName"]`表示选取DataFrame中的"areaName"列。`groupby()`函数将根据"areaName"列的值进行分组,并返回一个GroupBy对象。然后,使用`mean()`函数计算每个区域的单价的平均值。最后,通过`index.name = ""`将索引的名称设置为空字符串。 接下来,创建一个图形对象(Figure)并设置图形的大小为12x7英寸。然后,添加一个子图(Subplot)到图形中,并设置y轴的标签为"单价(元/平米)",标题为"各区域二手房平均单价"。 最后一行代码是绘制各区域二手房平均单价的垂直柱状图。`mean_unitprice.plot(kind="bar", ax=ax, fontsize=12)`表示使用`plot()`函数绘制柱状图,参数`kind="bar"`表示绘制柱状图,`ax=ax`表示将图形绘制在之前创建的子图上,`fontsize=12`表示设置字体大小为12。

给我解释一下这些代码,并对用到的知识进行介绍 groups_unitprice_area = df["unitPriceValue"].groupby(df["areaName"]) mean_unitprice = groups_unitprice_area.mean() mean_unitprice.index.name = ""

这段代码主要是对一个DataFrame数据进行处理,实现了按照"areaName"分组,计算每组中"unitPriceValue"列的均值,并将结果保存在"mean_unitprice"这个Series对象中。具体解释如下: - df["unitPriceValue"]:表示从DataFrame数据中选取"unitPriceValue"这一列。 - df["areaName"]:表示从DataFrame数据中选取"areaName"这一列。 - groups_unitprice_area = df["unitPriceValue"].groupby(df["areaName"]):这一行代码实现了对DataFrame数据进行分组。使用"groupby"方法,按照"areaName"这一列对"unitPriceValue"这一列进行分组,将分组后的结果保存在"groups_unitprice_area"这个GroupBy对象中。 - mean_unitprice = groups_unitprice_area.mean():这一行代码实现了对每个分组计算"unitPriceValue"的均值。使用"mean"方法,对"groups_unitprice_area"进行计算,得到每个分组的"unitPriceValue"均值,并将结果保存在"mean_unitprice"这个Series对象中。 - mean_unitprice.index.name = "":这一行代码主要是为了美观,将"mean_unitprice"这个Series对象的索引名称设为空字符串。 涉及到的知识点包括:Pandas库中的DataFrame和Series数据结构、DataFrame的分组操作(groupby方法)、Series的统计计算方法(mean方法)以及Series的属性(index.name属性)。
阅读全文

相关推荐

import matplotlib.pyplot as plt import pandas as pd #用来正常显示中文标签 plt.rcParams['font.family']='sans-serif' plt.rcParams['font.sans-serif'] = ['Simhei'] #用来正常显示负号 plt.rcParams['axes.unicode_minus'] = False #定义加载数据的文件名 filename = "../task/ershoufang_jinan_utf8_clean.csv" #自定义数据的行列索引(行索引使用pd默认的,列索引使用自定义的) names = ["id","communityName","areaName","total","unitPriceValue", "fwhx","szlc","jzmj","hxjg","tnmj", "jzlx","fwcx","jzjg","zxqk","thbl", "pbdt","cqnx","gpsj","jyqs","scjy", "fwyt","fwnx","cqss","dyxx","fbbj", "aa","bb","cc","dd"] #自定义需要处理的缺失值标记列表 miss_value = ["null","暂无数据"] df = pd.read_csv(filename,header=None, skiprows=[0],names=names,na_values=miss_value) #绘制房屋户型占比情况 count_fwhx = df['fwhx'].value_counts()[:10] count_other_fwhx = pd.Series({"其他":df['fwhx'].value_counts()[10:].count()}) count_fwhx = count_fwhx.append(count_other_fwhx) fig = plt.figure(figsize=(9,9)) ax = fig.add_subplot(111) ax.set_title("二手房房屋户型占比情况",fontsize=18) pt = count_fwhx.plot(kind="pie",cmap=plt.cm.rainbow,autopct="%3.1f%%",fontsize=12) 步骤2:二手房装修占比 通过饼图的方式对二手房的装修程度进行展示。 参照下面的提示补全缺失的代码: """房屋装修占比情况""" count_zxqk = df["zxqk"].value_counts() count_zxqk.name = "" fig = plt.figure(figsize=(9,9)) ax = fig.add_subplot(111) ax.set_title("二手房装修占比情况",fontsize=18) # 仿照前面的语句,绘制二手房装修占比情况饼图 ...(kind="pie",cmap=plt.cm.rainbow,autopct="%3.1f%%",fontsize=12)

<?xml version="1.0" encoding="UTF-8"?> <sqlMap> <select id="queryAreaCrops4List" parameterClass="commonj.sdo.DataObject" resultClass="commonj.sdo.DataObject" > select t.*,p.basename,c.cropsname,c.varieties,c.growthcycle,c.recoverycycle,gh.housename,ga.areaname,(case t.status when 1 then '种植中' else '已完成' end) as status_flag from zhnl_area_crops t LEFT JOIN zhnl_productionbase p on t.baseid = p.id LEFT JOIN zhnl_crops c on t.cropsid = c.id LEFT JOIN zhnl_greenhouse gh on t.greenhouseid = gh.id LEFT JOIN zhnl_greenhouse_area ga on t.areasid = ga.id where 1=1 <isNotNull prepend="and" property="basename"> p.basename like '%$basename$%' </isNotNull> <isNotNull prepend="and" property="housename"> gh.housename like '%$housename$%' </isNotNull> <isNotNull prepend="and" property="areaname"> ga.areaname like '%$areaname$%' </isNotNull> <isNotNull prepend="and" property="batchcode"> t.batchcode like '%$batchcode$%' </isNotNull> <isNotNull prepend="and" property="manageScope"> t.greenhouseid in ($manageScope$) </isNotNull> order by t.createtime desc </select> <select id="queryAreaCropsByAreaId" parameterClass="commonj.sdo.DataObject" resultClass="commonj.sdo.DataObject" > select t.*,c.cropsname,c.varieties from zhnl_area_crops t LEFT JOIN zhnl_crops c on t.cropsid = c.id where 1=1 and t.areasid= #areasid# and t.status = '1' </select> <update id="updateStatusByBatchcode" parameterClass="commonj.sdo.DataObject" > update zhnl_area_crops t set t.status = #status# where t.batchcode=#batchcode# </update> <update id="updateStateByBatchcode" parameterClass="commonj.sdo.DataObject" > update zhnl_area_crops t set t.state = #state# where t.batchcode=#batchcode# </update> <select id="getCpfjBycppc" parameterClass="map" resultClass="com.nl.Intelligentag.platform.area_xg.ZhnlAreaCropsCpfj"> select * from zhnl_area_crops_cpfj where batchcode=#cppc# </select> <select id="getCropsBycppc" parameterClass="map" resultClass="com.nl.Intelligentag.platform.productionbase.ZhnlAreaCrops"> select * from zhnl_area_crops where batchcode=#cppc# </select> </sqlMap>

import matplotlib.pyplot as plt import pandas as pd plt.rcParams['font.family']='sans-serif' plt.rcParams['font.sans-serif'] = ['Simhei'] plt.rcParams['axes.unicode_minus'] = False filename = "../task/ershoufang_jinan_utf8_clean.csv" names = ["id","communityName","areaName","total","unitPriceValue", "fwhx","szlc","jzmj","hxjg","tnmj", "jzlx","fwcx","jzjg","zxqk","thbl", "pbdt","cqnx","gpsj","jyqs","scjy", "fwyt","fwnx","cqss","dyxx","fbbj", "aa","bb","cc","dd"] miss_value = ["null","暂无数据"] df = pd.read_csv(filename,header=None, skiprows=[0],names=names,na_values=miss_value) 步骤一:二手房单价箱线图 通过箱线图分析二手房单价在各个区域的对比。 """各区域二手房单价箱线图""" #数据分组、数据运算和聚合 box_unitprice_area = df["unitPriceValue"].groupby(df["areaName"]) flag = True box_data = pd.DataFrame(list(range(21000)),columns=["start"]) for name,group in box_unitprice_area: box_data[name] = group del box_data["start"] fig = plt.figure(figsize=(12,7)) ax = fig.add_subplot(111) ax.set_ylabel("总价(万元)",fontsize=14) ax.set_title("各区域二手房单价箱线图",fontsize=18) box_data.plot(kind="box",fontsize=12,sym='r+',grid=True,ax=ax,yticks=[20000,30000,40000,50000,100000]) 可以对比济南各个区的二手房均价和分布。 步骤二:二手房总价箱线图 通过箱线图分析二手房总价在各个区域的对比。 参照下面的提示补全缺失的代码: # 仿照上面的代码,按地区对二手房总价进行归类

SELECT d.areaCode, d.areaName, d.bciStreetName, d.wasteTypeCode, d.wasteTypeName, d.wasteTrashCode, d.wasteTrashName, d.wasteName, sum( p.produceNumTotal ) AS produceNumTotal, sum( IFNULL(t.disposalNumTotal, 0 ),decimal(10,2) ) AS disposalNumTotal, sum( p.cityTransferNum ) AS cityTransferNum, sum( p.transferCityOutNum ) AS transferCityOutNum, sum( p.transferProvinceOutNum ) AS transferProvinceOutNum, sum( IFNULL( p.transferCityOutNum, 0 ) + IFNULL( p.transferProvinceOutNum, 0 ) ) AS transferCityAndProInNum, sum( t.transferCityInNum ) AS transferCityInNum, sum( t.transferProvinceInNum ) AS transferProvinceInNum, sum( IFNULL( t.transferCityInNum, 0 ) + IFNULL( t.transferProvinceInNum, 0 ) ) AS transferCityAndProInNum, sum( d.disposalAmount ) AS disposalAmount, sum( d.zhlyAmount ) AS zhlyAmount, sum( d.czAmount ) AS czAmount, sum( d.zcAmount ) AS zcAmount, sum( d.tmAmount ) AS tmAmount, sum( d.fsAmount ) AS fsAmount, sum( d.qtAmount ) AS qtAmount, CONVERT ( sum( zhlyAmount ) / sum( d.disposalAmount ) * 100, DECIMAL ( 10, 2 ) ) AS zhlyProportion, CONVERT ( sum( tmAmount ) / sum( d.disposalAmount ) * 100, DECIMAL ( 10, 2 ) ) AS tmProportion, CONVERT ( sum( fsAmount ) / sum( d.disposalAmount ) * 100, DECIMAL ( 10, 2 ) ) AS fsProportion, CONVERT ( sum( qtAmount ) / sum( d.disposalAmount ) * 100, DECIMAL ( 10, 2 ) ) AS qtProportion FROM wfcs_disposal_account_day_report d LEFT OUTER JOIN wfcs_transfer_sheet_disposal_day_summary t ON d.cityCode = t.disposalCityCode AND t.tenantId = d.tenantId LEFT OUTER JOIN wfcs_transfer_sheet_produce_day_summary p ON d.cityCode = p.produceCityCode AND d.tenantId = p.tenantId WHERE d.solidWasteType ='ybgygf' AND d.tenantId = '779ca469251e4a639fd39a7ab57e6859' AND d.recordDate >= '2023-06-01 00:00:00.0' AND d.recordDate <= '2023-06-04 00:00:00.0' AND d.cityCode = 'dacef933e39740349e6fb89fac792aae' GROUP BY areaCode ORDER BY produceNumTotal DESC 怎么优化这个sql

最新推荐

recommend-type

(179722824)三相异步电机矢量控制仿真模型

三相异步电机矢量控制仿真模型。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

一次并发导致错误分析与总结

一次并发导致错误分析
recommend-type

025 - 快手直播词和控场话术.docx

025 - 快手直播词和控场话术
recommend-type

第4章 管理信息库2024v2.pdf

第4章 管理信息库2024v2
recommend-type

(178729196)pytorch人脸表情识别数据集(2w8训练集+7k测试集)

在本文中,我们将深入探讨如何使用PyTorch进行人脸表情识别。这个数据集包含28,000张训练图像和7,000张测试图像,专为Python开发人员设计,以研究和构建深度学习模型来理解人类的情绪。PyTorch是一个强大的深度学习框架,因其灵活性和易用性而被广泛采用,它提供了动态计算图的功能,便于构建和调试神经网络。 让我们了解人脸表情识别的基本概念。这是一个计算机视觉任务,旨在根据面部特征识别七种基本表情:高兴、悲伤、惊讶、恐惧、愤怒、厌恶和中立。这通常涉及到图像处理、特征提取和机器学习算法。 要开始使用这个数据集,你需要做以下步骤: 1. **数据预处理**:解压Datawhale_人脸情绪识别_数据集文件,然后对图像进行预处理。这可能包括调整大小、归一化像素值到0-1区间、以及数据增强,如随机翻转、裁剪或旋转,以增加模型的泛化能力。 2. **数据加载器**:使用PyTorch的`torch.utils.data.Dataset`和`DataLoader`类来创建自定义数据加载器。这将使你能批量加载数据,并在训练过程中高效地处理图像。 3. **模型构建**:选择一个适合任务的卷
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"