c++ 计算算法运行时长

时间: 2023-11-28 10:37:11 浏览: 30
c计算算法运行时长可以通过使用clock函数来测量。clock函数返回从程序启动开始已经过去的时钟周期数,可以通过将结束时间减去开始时间来计算算法的运行时长。 下面是一个示例代码来演示如何使用clock函数来计算算法运行时长: #include <iostream> #include <ctime> int main() { clock_t begin, end; begin = clock(); // 这里放置需要计算运行时长的算法代码 end = clock(); double duration = double(end - begin) / CLOCKS_PER_SEC; std::cout << "算法运行时长:" << duration << "秒" << std::endl; return 0; }
相关问题

短进程优先调度算法C++

短进程优先调度算法(Shortest Job First,简称 SJF)是一种非抢占式的调度算法。它根据进程的估计运行时间来选择下一个要运行的进程,即先运行预计运行时间最短的进程。 下面是一个简单的 C++ 实现: ```c++ #include <iostream> using namespace std; int main() { int n, i, j, temp, sum = 0; float avg_wt, avg_tat; cout << "Enter the number of processes: "; cin >> n; int bt[n], wt[n], tat[n]; for(i = 0; i < n; i++) { cout << "Enter the burst time of process " << i+1 << ": "; cin >> bt[i]; } for(i = 0; i < n; i++) { for(j = i+1; j < n; j++) { if(bt[i] > bt[j]) { temp = bt[i]; bt[i] = bt[j]; bt[j] = temp; } } } wt[0] = 0; for(i = 1; i < n; i++) { wt[i] = 0; for(j = 0; j < i; j++) wt[i] += bt[j]; sum += wt[i]; } avg_wt = (float)sum/n; sum = 0; cout << "\nProcess\t\tBurst Time\tWaiting Time\tTurnaround Time"; for(i = 0; i < n; i++) { tat[i] = bt[i] + wt[i]; sum += tat[i]; cout << "\nP" << i+1 << "\t\t" << bt[i] << "\t\t" << wt[i] << "\t\t" << tat[i]; } avg_tat = (float)sum/n; cout << "\n\nAverage Waiting Time = " << avg_wt; cout << "\nAverage Turnaround Time = " << avg_tat; return 0; } ``` 在这个实现中,我们首先输入进程的数量和它们的 burst time(执行时间),然后对它们按照 burst time 进行排序。接着计算每个进程的 waiting time(等待时间),并且计算它们的 turnaround time(周转时间)。最后,我们计算平均等待时间和平均周转时间,并输出它们。 需要注意的是,这个实现假设所有进程的 burst time 都是已知的,而实际上通常情况下我们并不知道每个进程需要运行多长时间。因此,在实际使用 SJF 调度算法时,我们需要使用一些估算技术来估计每个进程的执行时间。

linux系统c++实现银行家算法

银行家算法是一种避免死锁的算法,用于管理资源的分配。以下是一个简单的Linux系统上使用C语言实现银行家算法的示例。 先来了解银行家算法的基本原理: 银行家算法的主要目的是为了避免死锁的发生,确保每个进程在运行结束前都能获取到足够的资源。在实现银行家算法时,需要预测每个进程的资源需求量,并计算出剩余的资源量是否能够满足其他进程的资源需求。如果剩余资源量不足以满足其他进程的需求,则需要等待,直到剩余资源量足以满足其他进程的需求。 首先,定义几个基本的数据结构: ```C #define MAX_PROCESS 100 // 最大进程数 #define MAX_RESOURCE 100 // 最大资源数 int need[MAX_PROCESS][MAX_RESOURCE]; // 存储每个进程需要的资源数量 int allocation[MAX_PROCESS][MAX_RESOURCE]; // 存储每个进程已分配的资源数量 int available[MAX_RESOURCE]; // 存储可用资源的数量 int max_alloc[MAX_RESOURCE]; // 存储资源的最大可用数量 int process_count, resource_count; // 进程和资源的数量 int safe_sequence[MAX_PROCESS]; // 安全序列的数组 ``` 这里需要说明的是,need和allocation矩阵的行数和列数都是进程数和资源数。available数组中存储的是可用资源的数量,max_alloc数组中存储的是每个资源的最大可用数量。 然后,实现银行家算法的主要功能函数,即检查是否存在安全序列: ```C int is_safe_sequence(int* work, int* finish) { int i, j, k, is_safe; int work_copy[MAX_RESOURCE], finish_copy[MAX_PROCESS]; // 拷贝工作向量 for(i = 0; i < resource_count; i++) { work_copy[i] = work[i]; } // 拷贝 finish 标志 for(i = 0; i < process_count; i++) { finish_copy[i] = finish[i]; } // 安全序列的长度 int safe_count = 0; while(safe_count < process_count) { is_safe = 0; for(i = 0; i < process_count; i++) { if(!finish_copy[i]) { // 如果该进程未分配到资源 for(j = 0; j < resource_count; j++) { if(need[i][j] > work_copy[j]) break; } if(j == resource_count) { // 如果该进程需要的所有资源都可以分配 for(k = 0; k < resource_count; k++) { work_copy[k] += allocation[i][k]; // 分配资源 } finish_copy[i] = 1; safe_sequence[safe_count] = i; // 增加安全序列的长度 safe_count++; is_safe = 1; } } } if(!is_safe) { // 如果不存在满足需要的进程,直接退出 break; } } return (safe_count == process_count); // 返回是否存在安全序列 } ``` 这个函数中,需要传入两个参数,分别是工作向量和每个进程的完成标志。在函数中,首先拷贝一份工作向量和完成标志的副本,然后在循环中每次遍历所有进程,检查未完成的进程是否能够分配到所需的资源。如果一个进程能够分配到需要的所有资源,则标记该进程已完成,增加安全序列的长度,并更新工作向量。如果不存在满足需要的进程,则直接退出。 最后,实现一个函数来计算安全序列: ```C int* calculate_safe_sequence() { int i, j; int work[MAX_RESOURCE], finish[MAX_PROCESS]; int* safe_sequence_ptr; safe_sequence_ptr = safe_sequence; // 初始化work向量和finish标志 for(i = 0; i < resource_count; i++) { work[i] = available[i]; } for(i = 0; i < process_count; i++) { finish[i] = 0; } // 检查是否存在安全序列 if(!is_safe_sequence(work, finish)) { return NULL; } return safe_sequence_ptr; // 返回安全序列的指针 } ``` 这个函数中,首先需要初始化工作向量和完成标志,并检查是否存在安全序列。如果存在安全序列,则直接返回安全序列指针。否则,返回NULL。 最后,我们可以编写一个简单的测试程序来测试银行家算法的实现: ```C int main(int argc, char** argv) { // 初始化资源数量和进程数量 resource_count = 3; process_count = 5; // 初始化need、allocation、available和max_alloc矩阵 int need_matrix[MAX_PROCESS][MAX_RESOURCE] = { {5, 1, 0}, {3, 2, 0}, {2, 0, 0}, {0, 1, 1}, {0, 0, 2} }; int allocation_matrix[MAX_PROCESS][MAX_RESOURCE] = { {0, 1, 0}, {2, 0, 0}, {3, 0, 2}, {2, 1, 1}, {0, 0, 2} }; int available_array[MAX_RESOURCE] = { 1, 0, 2 }; int max_alloc_array[MAX_RESOURCE] = { 5, 5, 5 }; memcpy(need, need_matrix, sizeof(need_matrix)); memcpy(allocation, allocation_matrix, sizeof(allocation_matrix)); memcpy(available, available_array, sizeof(available_array)); memcpy(max_alloc, max_alloc_array, sizeof(max_alloc_array)); // 计算并输出安全序列 int* safe_sequence_ptr = calculate_safe_sequence(); if(safe_sequence_ptr) { printf("Safe sequence: "); for(int i = 0; i < process_count; i++) { printf("%d ", *(safe_sequence_ptr + i)); // 输出安全序列 } printf("\n"); } else { printf("No safe sequence found.\n"); } return 0; } ``` 这个测试程序中,我们首先初始化了一些参数(需要根据实际情况进行调整),然后调用calculate_safe_sequence函数计算安全序列。如果存在安全序列,输出安全序列;否则,输出“No safe sequence found.”。 以上就是一个简单的Linux系统上使用C语言实现银行家算法的示例。实际上,在生产环境中,我们需要根据实际的业务需求和系统规模来优化实现,并通过各种技术手段提高该算法的性能和稳定性。

相关推荐

最新推荐

recommend-type

c/c++ 学习总结 初学者必备

23、编写gbk_strlen函数,计算含有汉字的字符串的长度,汉字作为一个字符处理;已知:汉字编码为双字节,其中 参数里涉及指针,就要考虑该指针是不是一个需要修改的量,如果是,则参数应采用指向指针的指针。 (C语言里...
recommend-type

2017-数据结构课程设计-答案.doc

求:设计算法,实现一个任意长的整数进行加法、减法运算的演示程序。例如:1234,5123,4512,3451,2345与-1111,1111,1111,1111,1111的加法结果为:0123,4012,3401,2340,1234。基本要求如下: (1)利用...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。