给我一个对灰度图片采用最大类间方差法计算阈值的matlab程序
时间: 2024-09-23 14:11:11 浏览: 33
灰度图像的阈值处理是一种常见的二值化方法,其中最大类间方差法(Otsu's Method)是一个常用的自动阈值选择算法。以下是使用Matlab实现的简单版本:
```matlab
% 加载灰度图像
img = imread('your_image_gray.png'); % 替换为你要处理的灰度图像文件名
% 确保图像为双精度浮点数
img = double(img);
% 计算直方图
histogram = histcounts(img(:), 256); % 假设范围从0到255,可以调整
% 初始化变量
global_threshold = 0;
variance_max = 0;
% 遍历可能的阈值
for threshold = 1:length(histogram)
% 分割图像为前景和背景
foreground = img > threshold;
background = img <= threshold;
% 计算每个类别的像素数
foreground_pixels = sum(foreground);
background_pixels = sum(background);
% 计算总像素数
total_pixels = foreground_pixels + background_pixels;
% 计算两个类别的平均灰度值
mean_foreground = sum(img(foreground)) / foreground_pixels;
mean_background = sum(img(background)) / background_pixels;
% 计算类间方差
class_variance = (foreground_pixels * sum((img - mean_foreground).^2) + background_pixels * sum((img - mean_background).^2)) / total_pixels;
% 更新最大类间方差和对应的阈值
if class_variance > variance_max && foreground_pixels > 0 && background_pixels > 0
variance_max = class_variance;
global_threshold = threshold;
end
end
% 输出并应用阈值
thresholded_img = imbinarize(img, global_threshold);
imshow(thresholded_img);
%
阅读全文