K6转向架动力学模型构建步骤

时间: 2023-10-10 22:15:28 浏览: 54
K6转向架动力学模型构建步骤如下: 1. 确定转向架系统的结构:包括转向架的各个部件、连接方式和相互作用关系等。 2. 选择适当的坐标系:根据转向架系统的结构和运动特点,选择适当的坐标系,以便建立合适的运动学和动力学方程。 3. 建立运动学方程:根据转向架的运动特点,建立转向架的运动学方程,包括位置、速度和加速度等。 4. 建立动力学方程:考虑到转向架的受力和受力矩,建立转向架的动力学方程,包括转向架的运动方程和力学方程等。 5. 确定模型参数:包括转向架的质量、重心位置、转动惯量等,这些参数可以通过实验或计算获得。 6. 进行模型验证:通过实验或仿真等方法,验证所建立的转向架动力学模型的准确性和可靠性。 7. 进行模型优化:根据实验或仿真结果,对模型进行优化,使其更加符合实际情况。 总之,建立K6转向架动力学模型需要针对转向架系统的特点进行详细的分析和研究,同时需要考虑到转向架的运动学和动力学特性,以及各种外部因素对转向架的影响。
相关问题

K6转向架SIMPACK模型构建步骤

K6转向架的SIMPACK模型构建步骤如下: 1. 根据转向架的结构和参数,建立转向架的三维几何模型。 2. 在几何模型的基础上,建立转向架的有限元模型。有限元模型的建立需要考虑到转向架的刚度、弹性等特性,以及转向架与车辆其他部件的联系。 3. 在有限元模型的基础上,进行转向架的动力学建模。动力学建模包括转向架的动力学特性、运动学特性,以及转向架与车辆其他部件之间的相互作用。 4. 进行转向架的SIMPACK模型的搭建。SIMPACK是一种用于车辆动力学仿真的软件,可以通过SIMPACK进行转向架的运动学仿真和动力学仿真。 5. 对转向架的SIMPACK模型进行验证和优化调整。验证和优化调整的过程需要与实际车辆运行数据进行对比和验证,以保证模型的准确性和可靠性。 通过以上步骤,可以构建出一个较为准确的K6转向架SIMPACK模型,用于车辆动力学仿真分析和优化设计。

stm32cubemx配置stm32f030k6的adc dma详细步骤及程序

下面是配置STM32F030K6 ADC DMA的详细步骤和程序: 1. 启用ADC和DMA模块 在STM32CubeMX中,选中你的工程文件,然后在右侧的“Pinout & Configuration”选项卡中选择“ADC”和“DMA”。在“ADC”下面将“ADC1”模块勾选,然后在“DMA”下面将“DMA1 Channel1”勾选。 2. 配置ADC模块 在“Configuration”选项卡中选择“ADC”模块。在“Configured Channels”中选择要使用的ADC通道,然后在“Regular Conversion Mode”下面选择采样时间和采样周期。在本例中,我们将使用ADC通道0。 3. 配置DMA模块 在“Configuration”选项卡中选择“DMA”模块。在“DMA Configuration”下面,将“DMA Request Settings”设置为“Peripheral to Memory”。在“Data Width”中选择“Half-Word”,因为ADC输出是12位,需要用两个字节来存储。在“Memory Increment Mode”和“Peripheral Increment Mode”中选择“Enabled”,以便在每次传输后自动递增内存地址和外设地址。 4. 生成代码 点击“GENERATE CODE”按钮生成代码。 5. 修改main.c文件 打开生成的main.c文件,并添加以下代码: ```c #include "main.h" #include "stm32f0xx_hal.h" ADC_HandleTypeDef hadc; DMA_HandleTypeDef hdma_adc; uint16_t adcValue[1]; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_DMA_Init(); MX_ADC_Init(); HAL_ADC_Start_DMA(&hadc, (uint32_t*)adcValue, 1); while (1) { // 这里可以添加其他代码 } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_ADC_Init(void) { ADC_ChannelConfTypeDef sConfig; hadc.Instance = ADC1; hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV1; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.ScanConvMode = DISABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc.Init.LowPowerAutoWait = DISABLE; hadc.Init.ContinuousConvMode = DISABLE; hadc.Init.NbrOfConversion = 1; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc.Init.DMAContinuousRequests = ENABLE; hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; hadc.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_RANK_CHANNEL_NUMBER; sConfig.SamplingTime = ADC_SAMPLETIME_13CYCLES_5; if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { Error_Handler(); } } static void MX_DMA_Init(void) { hdma_adc.Instance = DMA1_Channel1; hdma_adc.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc.Init.MemInc = DMA_MINC_ENABLE; hdma_adc.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_adc.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_adc.Init.Mode = DMA_CIRCULAR; hdma_adc.Init.Priority = DMA_PRIORITY_LOW; if (HAL_DMA_Init(&hdma_adc) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(&hadc,DMA_Handle,hdma_adc); } void Error_Handler(void) { while(1) { } } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { } #endif ``` 6. 编译并下载 编译并下载程序到STM32F030K6开发板中。此时,ADC将开始采样并通过DMA将数据传输到内存中。 注意:在实际应用中,需要根据具体的需求对ADC采样时间和DMA传输模式进行调整。同时,需要根据具体的外设和接口进行相应的配置和连接。

相关推荐

最新推荐

recommend-type

STM32G030x6_x8_C6_F6_J6_K6_C8_K8中文数据手册.pdf

STM32G030系列,嵌入式中文数据手册 ----已验证,属实
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。