使用matlab实现一个简单的线性分类器,要求使用Fisher线性判别分析,不能使用matlab中自带的fitcdiscr函数
时间: 2024-02-28 21:57:23 浏览: 84
好的,下面是使用Fisher线性判别分析实现一个简单的线性分类器的Matlab代码,这里我们手动实现Fisher线性判别分析:
```matlab
% 加载数据
load fisheriris.mat
X = meas;
Y = species;
% 计算各个类别的均值向量
mu1 = mean(X(Y=='setosa',:));
mu2 = mean(X(Y=='versicolor',:));
mu3 = mean(X(Y=='virginica',:));
% 计算总体均值向量
mu = mean(X);
% 计算各个类别的散度矩阵
S1 = (X(Y=='setosa',:) - mu1)' * (X(Y=='setosa',:) - mu1);
S2 = (X(Y=='versicolor',:) - mu2)' * (X(Y=='versicolor',:) - mu2);
S3 = (X(Y=='virginica',:) - mu3)' * (X(Y=='virginica',:) - mu3);
% 计算总体散度矩阵
Sw = S1 + S2 + S3;
% 计算投影方向
w = inv(Sw) * (mu1 - mu2 + mu2 - mu3);
% 对数据进行投影
X_proj = X * w;
% 使用投影后的数据进行分类
newX = [6.5, 3.0, 5.5, 1.8];
newX_proj = newX * w;
label = '';
if abs(newX_proj - mu1 * w) < abs(newX_proj - mu2 * w) && abs(newX_proj - mu1 * w) < abs(newX_proj - mu3 * w)
label = 'setosa';
elseif abs(newX_proj - mu2 * w) < abs(newX_proj - mu1 * w) && abs(newX_proj - mu2 * w) < abs(newX_proj - mu3 * w)
label = 'versicolor';
else
label = 'virginica';
end
% 输出分类结果
disp(label);
```
这段代码首先加载了鸢尾花数据集,然后手动计算各个类别的均值向量、总体均值向量、各个类别的散度矩阵、总体散度矩阵以及投影方向。接着,使用投影后的数据进行分类,并输出分类结果。
阅读全文