def sigmoid_prime(self, z): return self.sigmoid(z) * (1 - self.sigmoid(z))
时间: 2024-03-11 11:35:14 浏览: 107
这是一个神经网络中常用的sigmoid函数的导数,也称为sigmoid函数的导函数,用于计算反向传播中的梯度。其中,sigmoid函数本身是一个S形曲线,将输入值映射到0到1之间的输出值。其导数则是根据链式法则计算得到的,可以表示为sigmoid函数输出值关于输入值的导数,即sigmoid函数的输出值乘以1减去该输出值。
相关问题
以输入为[1 0 0;0 1 0;0 0 1]输出为[1 0; 0 0.5;0 1]为训练样本为例,完成BP神经网络的设计及仿真训练
好的,这里我将为你介绍如何完成BP神经网络的设计及仿真训练。
首先,我们需要导入一些必要的库。在这里,我将使用Python中的numpy库来处理矩阵和向量运算。你可以使用以下命令安装numpy库:
```
pip install numpy
```
接下来,我们将定义一个BP神经网络类,该类将包含以下方法:
- 构造函数:初始化神经网络的层数、各层神经元个数、学习率以及权重和偏置的初始化方式。
- 前向传播:将输入信号通过神经网络的各层进行推导,并返回输出结果。
- 反向传播:根据输出误差和神经网络的权重,计算各层的误差,并更新权重和偏置。
- 训练模型:使用给定的训练数据集对神经网络进行训练,并输出训练误差。
下面是BP神经网络类的代码实现:
```python
import numpy as np
class BPNeuralNetwork:
def __init__(self, layer_sizes, learning_rate, weight_init='random', bias_init='zeros'):
self.layer_sizes = layer_sizes
self.learning_rate = learning_rate
self.weights = []
self.biases = []
if weight_init == 'random':
for i in range(1, len(layer_sizes)):
self.weights.append(np.random.randn(layer_sizes[i], layer_sizes[i-1]))
elif weight_init == 'zeros':
for i in range(1, len(layer_sizes)):
self.weights.append(np.zeros((layer_sizes[i], layer_sizes[i-1])))
if bias_init == 'zeros':
for i in range(1, len(layer_sizes)):
self.biases.append(np.zeros((layer_sizes[i], 1)))
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def sigmoid_prime(self, z):
return self.sigmoid(z) * (1 - self.sigmoid(z))
def forward(self, x):
a = x
for w, b in zip(self.weights, self.biases):
z = np.dot(w, a) + b
a = self.sigmoid(z)
return a
def backward(self, x, y):
a = x
activations = [x]
zs = []
for w, b in zip(self.weights, self.biases):
z = np.dot(w, a) + b
zs.append(z)
a = self.sigmoid(z)
activations.append(a)
delta = (activations[-1] - y) * self.sigmoid_prime(zs[-1])
deltas = [delta]
for w, z in zip(reversed(self.weights[1:]), reversed(zs[:-1])):
delta = np.dot(w.T, delta) * self.sigmoid_prime(z)
deltas.append(delta)
deltas.reverse()
for i in range(len(self.weights)):
grad_w = np.dot(deltas[i], activations[i].T)
grad_b = deltas[i]
self.weights[i] -= self.learning_rate * grad_w
self.biases[i] -= self.learning_rate * grad_b
def train(self, x_train, y_train, epochs):
for i in range(epochs):
for x, y in zip(x_train, y_train):
self.backward(x.reshape(-1, 1), y.reshape(-1, 1))
y_pred = self.forward(x_train.T)
loss = np.mean((y_pred - y_train.T)**2)
print(f"Epoch {i+1}: Loss={loss:.4f}")
```
现在我们已经定义了BP神经网络类,接下来我们将使用该类来训练模型。
根据题目描述,我们需要设计一个包含3个输入节点、2个隐藏节点和2个输出节点的神经网络。因此,我们可以使用以下代码定义我们的神经网络:
```python
input_size = 3
hidden_size = 2
output_size = 2
layer_sizes = [input_size, hidden_size, output_size]
learning_rate = 0.1
bpnn = BPNeuralNetwork(layer_sizes, learning_rate)
```
接下来,我们需要准备训练数据集。根据题目描述,我们需要训练神经网络将输入矩阵[1 0 0;0 1 0;0 0 1]映射到输出矩阵[1 0; 0 0.5; 0 1]。因此,我们可以使用以下代码来定义我们的训练数据集:
```python
x_train = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
y_train = np.array([[1, 0], [0, 0.5], [0, 1]])
```
最后,我们可以使用以下代码来训练我们的神经网络,并输出训练误差:
```python
epochs = 1000
bpnn.train(x_train, y_train, epochs)
```
这将输出每个epoch的训练误差。最终的训练误差将接近于0。
class BPNeuralNetwork:
BPNeuralNetwork 是一个基于反向传播算法的神经网络类,用于解决分类、回归等问题。下面是一个简单的实现示例:
``` python
import numpy as np
class BPNeuralNetwork:
def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
def sigmoid(self, z):
return 1.0 / (1.0 + np.exp(-z))
def sigmoid_prime(self, z):
return self.sigmoid(z) * (1 - self.sigmoid(z))
def feedforward(self, a):
for b, w in zip(self.biases, self.weights):
a = self.sigmoid(np.dot(w, a) + b)
return a
def train(self, training_data, epochs, mini_batch_size, eta, test_data=None):
if test_data:
n_test = len(test_data)
n = len(training_data)
for j in range(epochs):
np.random.shuffle(training_data)
mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
else:
print("Epoch {0} complete".format(j))
def update_mini_batch(self, mini_batch, eta):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]
def backprop(self, x, y):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
activation = x
activations = [x]
zs = []
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation) + b
zs.append(z)
activation = self.sigmoid(z)
activations.append(activation)
delta = self.cost_derivative(activations[-1], y) * self.sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
for l in range(2, self.num_layers):
z = zs[-l]
sp = self.sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)
def cost_derivative(self, output_activations, y):
return (output_activations-y)
def evaluate(self, test_data):
test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)
```
这里定义了一个 BPNeuralNetwork 类,包含了神经网络的初始化、前向传播、反向传播、训练、评估等方法。其中,sigmoid 函数和 sigmoid_prime 函数分别表示激活函数及其导数,feedforward 方法表示前向传播,train 方法表示训练,update_mini_batch 方法表示每次更新的小批量数据,backprop 方法表示反向传播,cost_derivative 方法表示误差函数的导数,evaluate 方法表示测试评估。
阅读全文