基于C51单片机用C语言写出一个满24小时清零的定时电子钟

时间: 2024-02-11 20:05:17 浏览: 75
ZIP

基于c51单片机设计的电子秤,源码+仿真

star5星 · 资源好评率100%
好的,下面是一份基于C51单片机用C语言编写的满24小时清零的定时电子钟的代码: ```c #include <reg52.h> // 定义数码管端口 sbit D1 = P2^0; sbit D2 = P2^1; sbit D3 = P2^2; sbit D4 = P2^3; // 定义按键端口 sbit Key1 = P1^0; // 按键1 sbit Key2 = P1^1; // 按键2 // 定义全局变量 unsigned char code table[] = { 0x3f, // 0 0x06, // 1 0x5b, // 2 0x4f, // 3 0x66, // 4 0x6d, // 5 0x7d, // 6 0x07, // 7 0x7f, // 8 0x6f // 9 }; // 数码管显示表 unsigned char code hour_table[] = { 0x00, // 0小时 0x01, // 1小时 0x02, // 2小时 0x03, // 3小时 0x04, // 4小时 0x05, // 5小时 0x06, // 6小时 0x07, // 7小时 0x08, // 8小时 0x09, // 9小时 0x10, // 10小时 0x11, // 11小时 0x12, // 12小时 0x13, // 13小时 0x14, // 14小时 0x15, // 15小时 0x16, // 16小时 0x17, // 17小时 0x18, // 18小时 0x19, // 19小时 0x20, // 20小时 0x21, // 21小时 0x22, // 22小时 0x23 // 23小时 }; // 小时显示表 unsigned char code minute_second_table[] = { 0x00, // 0分或0秒 0x01, // 1分或1秒 0x02, // 2分或2秒 0x03, // 3分或3秒 0x04, // 4分或4秒 0x05, // 5分或5秒 0x06, // 6分或6秒 0x07, // 7分或7秒 0x08, // 8分或8秒 0x09, // 9分或9秒 0x10, // 10分或10秒 0x11, // 11分或11秒 0x12, // 12分或12秒 0x13, // 13分或13秒 0x14, // 14分或14秒 0x15, // 15分或15秒 0x16, // 16分或16秒 0x17, // 17分或17秒 0x18, // 18分或18秒 0x19, // 19分或19秒 0x20, // 20分或20秒 0x21, // 21分或21秒 0x22, // 22分或22秒 0x23, // 23分或23秒 0x24, // 24分或24秒 0x25, // 25分或25秒 0x26, // 26分或26秒 0x27, // 27分或27秒 0x28, // 28分或28秒 0x29, // 29分或29秒 0x30, // 30分或30秒 0x31, // 31分或31秒 0x32, // 32分或32秒 0x33, // 33分或33秒 0x34, // 34分或34秒 0x35, // 35分或35秒 0x36, // 36分或36秒 0x37, // 37分或37秒 0x38, // 38分或38秒 0x39 // 39分或39秒 }; // 分钟和秒钟显示表 unsigned char hour = 0; // 小时 unsigned char minute = 0; // 分钟 unsigned char second = 0; // 秒钟 // 延时函数 void Delay(unsigned int t) { unsigned int i, j; for (i = 0; i < t; i++) { for (j = 0; j < 120; j++); } } // 数码管显示函数 void Display(unsigned char h, unsigned char m, unsigned char s) { D1 = 1; // 第一位数码管 P0 = hour_table[h / 10]; // 显示小时的十位 Delay(5); D1 = 0; D2 = 1; // 第二位数码管 P0 = hour_table[h % 10]; // 显示小时的个位 Delay(5); D2 = 0; D3 = 1; // 第三位数码管 P0 = minute_second_table[m / 10]; // 显示分钟的十位或秒钟的十位 Delay(5); D3 = 0; D4 = 1; // 第四位数码管 P0 = minute_second_table[m % 10]; // 显示分钟的个位或秒钟的个位 Delay(5); D4 = 0; } // 定时器0中断函数 void Timer0_ISR() interrupt 1 { TH0 = (65536 - 1000) / 256; // 重新赋值TH0,实现1ms的定时 TL0 = (65536 - 1000) % 256; second++; // 秒钟加1 if (second >= 60) { // 如果秒钟达到60,进位到分钟 second = 0; minute++; if (minute >= 60) { // 如果分钟达到60,进位到小时 minute = 0; hour++; if (hour >= 24) { // 如果小时达到24,清零 hour = 0; } } } if (Key1 == 0) { // 按键1按下,小时加1 Delay(10); // 延时10ms消除按键抖动 if (Key1 == 0) { hour++; if (hour >= 24) { // 如果小时达到24,清零 hour = 0; } } } if (Key2 == 0) { // 按键2按下,分钟加1 Delay(10); // 延时10ms消除按键抖动 if (Key2 == 0) { minute++; if (minute >= 60) { // 如果分钟达到60,进位到小时 minute = 0; hour++; if (hour >= 24) { // 如果小时达到24,清零 hour = 0; } } } } Display(hour, minute, second); // 显示时间 } // 主函数 void main() { TMOD = 0x01; // 定时器0工作在模式1 TH0 = (65536 - 1000) / 256; // 定时器初值 TL0 = (65536 - 1000) % 256; IE = 0x82; // 开启定时器0中断和总中断 TR0 = 1; // 启动定时器0 while (1) {} // 主循环 } ``` 这份代码使用了定时器0和两个按键,可以实现满24小时清零的定时电子钟功能。其中,定时器0每1ms产生一次中断,通过累加计时来更新时钟显示;按键1和按键2分别用来调整小时和分钟,实现时间的调整。
阅读全文

相关推荐

最新推荐

recommend-type

C51单片机课程设计电子钟设计代码及运行效果照片

【C51单片机课程设计电子钟设计】是一个典型的嵌入式系统项目,它涉及到C51单片机编程、硬件接口设计以及实时系统控制等多个知识点。在本设计中,电子钟通过单片机的定时器功能实现时间的精确计数,并利用实验仪上的...
recommend-type

基于STC89C51单片机的出租车计费器设计

4. 传感电路:使用霍尔传感器A44E检测叶轮转动,每转一圈产生一个脉冲信号,通过P3.4口传递给单片机。 5. 语音电路:ISD1820语音芯片用于语音提示,其操作简单,集成度高,通过P2.7口控制。 软件设计主要涉及单片机...
recommend-type

电子时钟 c51单片机代码

电子时钟是使用c51单片机实现的一个简单的数字时钟设计。该设计使用了c51单片机作为核心控制器,通过编程实现了时钟的显示和键盘输入功能。 1. 硬件设计: 该设计使用了c51单片机作为核心控制器,连接了一个八段管...
recommend-type

基于C51单片机的多功能电子时钟设计(别人的成果——很好,拿来分享)

【基于C51单片机的多功能电子时钟设计】是一个综合性的项目,涉及到8051单片机的应用、定时器的使用、按键扫描、LED数码管显示等多个知识点。这个设计旨在帮助学习者理解单片机设计的核心原理,并鼓励创新和独立思考...
recommend-type

STC89C51单片机EEPROM读写例程

此外,还有`Byte_Read`、`Byte_Program`和`Sector_Erase`函数,分别用于读取一个字节、编程一个字节和擦除一个扇区。`IAP_Disable`函数用于在完成操作后关闭IAP功能,以节省系统资源。 在`main`函数中,创建了两个...
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。