keras MNIST PSO
时间: 2023-08-31 21:13:16 浏览: 104
keras_mnist实例
你可以使用 Keras 和 Particle Swarm Optimization(PSO)来训练 MNIST 数据集上的模型。首先,导入必要的库和模块:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
from keras.utils import to_categorical
from pyswarm import pso
```
然后,加载 MNIST 数据集并进行预处理:
```python
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# 将图像数据从三维数组转换为二维数组
X_train = X_train.reshape((60000, 28 * 28))
X_test = X_test.reshape((10000, 28 * 28))
# 将图像数据缩放到 0-1 范围内
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
# 将标签进行 one-hot 编码
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
```
接下来,定义模型的结构和目标函数:
```python
def create_model(optimizer='adam'):
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(28 * 28,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
def objective_function(weights):
model = create_model()
model.set_weights(weights)
loss, _ = model.evaluate(X_train, y_train, verbose=0)
return loss
```
最后,使用 PSO 来优化模型的权重:
```python
# 定义搜索空间和参数范围
n_variables = sum(p.shape.num_elements() for p in create_model().get_weights())
lb = [-1] * n_variables
ub = [1] * n_variables
# 使用 PSO 进行优化
best_weights, best_cost = pso(objective_function, lb, ub)
# 根据优化结果重新设置模型的权重
model = create_model()
model.set_weights(best_weights)
```
这样,你就可以使用 PSO 优化 Keras 模型在 MNIST 数据集上的表现了。记得根据实际需求调整模型结构和 PSO 的参数。
阅读全文