mean = np.mean(iris.data, axis=0)解释

时间: 2023-06-08 10:07:43 浏览: 65
这段代码是在使用Numpy库对鸢尾花数据集进行计算。具体来说,它使用np.mean函数计算出iris.data数组中每一列的平均值,也就是计算出每种花的各项数据的平均值。这个过程中,axis=0表示对每一列进行计算,返回一个大小为(1, 4)的数组,其中4是每个特征的数量。这个均值数组可以用来正规化数据,或作为数据预处理的一部分。
相关问题

这段代码无法运行,请为我修改一下并添加注释:import numpy as np import pandas as pd import matplotlib.pyplot as plt # 读入鸢尾花数据集 df = pd.read_csv('iris_pca.csv', header=None) # 将数据转换为NumPy数组 X = df.iloc[:, :-1].values y = df.iloc[:, -1].values # 对所有样本进行中心化 X_mean = np.mean(X, axis=0) X_centered = X - X_mean # 计算样本的协方差矩阵 cov_matrix = np.cov(X_centered, rowvar=False) # 对协方差矩阵做特征值分解 eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix) # 将特征向量按照对应的特征值从大到小排序 eig_pairs = [(np.abs(eigenvalues[i]), eigenvectors[:, i]) for i in range(len(eigenvalues))] eig_pairs.sort(reverse=True) # 取最大的d个特征值所对应的特征向量 d = 2 w = np.hstack((eig_pairs[i][1].reshape(4, 1)) for i in range(d)) # 计算投影矩阵 X_new = X_centered.dot(w) # 将降维后的数据和标记合并 data_new = np.hstack((X_new, y.reshape(len(y), 1))) # 将降维后的数据可视化呈现 plt.scatter(X_new[:, 0], X_new[:, 1], c=y) plt.xlabel('PC1') plt.ylabel('PC2') plt.show()

修改后的代码如下,并添加了注释: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt # 读入鸢尾花数据集 df = pd.read_csv('iris_pca.csv', header=None) # 将数据转换为NumPy数组 X = df.iloc[:, :-1].values y = df.iloc[:, -1].values # 对所有样本进行中心化 X_mean = np.mean(X, axis=0) X_centered = X - X_mean # 计算样本的协方差矩阵 cov_matrix = np.cov(X_centered, rowvar=False) # 对协方差矩阵做特征值分解 eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix) # 将特征向量按照对应的特征值从大到小排序 eig_pairs = [(np.abs(eigenvalues[i]), eigenvectors[:, i]) for i in range(len(eigenvalues))] eig_pairs.sort(reverse=True) # 取最大的d个特征值所对应的特征向量 d = 2 w = np.hstack((eig_pairs[i][1].reshape(4, 1)) for i in range(d)) # 计算投影矩阵 X_new = X_centered.dot(w) # 将降维后的数据和标记合并 data_new = np.hstack((X_new, y.reshape(len(y), 1))) # 将降维后的数据可视化呈现 plt.scatter(X_new[:, 0], X_new[:, 1], c=y) plt.xlabel('PC1') plt.ylabel('PC2') plt.show() ``` 注释中解释了每一步的作用,方便您理解和使用。

import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn.datasets import load_iris data = load_iris() X = data['data'] y = data['target'] X = X[y != 2, 0:2] y = y[y != 2] X -= np.mean(X, axis=0) X /= np.std(X, axis=0, ddof=1) m = len(X) data = int(0.8 * m) X_train, X_test = np.split(X, [data]) y_train, y_test = np.split(y, [data]) model_svm = SVC(C=1.0, kernel='linear') model_svm.fit(X_train, y_train) Accuracy = model_svm.score(X_test, y_test) print('Linear Accuracy = ', Accuracy) X_test_h = model_svm.predict(X_test) 将每一段的代码含义解释出来

这段代码使用了Scikit-learn库来训练一个支持向量机(SVM)模型并评估其准确性。下面是每段代码的含义解释: 1. `import numpy as np`:导入NumPy库,用于处理数组和数值计算。 2. `import pandas as pd`:导入Pandas库,用于数据处理和分析。 3. `from sklearn.svm import SVC`:从Scikit-learn库中导入支持向量机模型。 4. `from sklearn.datasets import load_iris`:从Scikit-learn库中导入鸢尾花数据集。 5. `data = load_iris()`:加载鸢尾花数据集。 6. `X = data['data']`:将数据集的特征存储在X变量中。 7. `y = data['target']`:将数据集的目标变量存储在y变量中。 8. `X = X[y != 2, 0:2]`:选择特征矩阵X中类别不为2的样本,并只保留前两个特征。 9. `y = y[y != 2]`:选择目标变量y中类别不为2的样本。 10. `X -= np.mean(X, axis=0)`:对特征矩阵X进行均值归一化,即减去每个特征的均值。 11. `X /= np.std(X, axis=0, ddof=1)`:对特征矩阵X进行标准差归一化,即除以每个特征的标准差。 12. `m = len(X)`:计算样本数量m。 13. `data = int(0.8 * m)`:计算训练集的大小,这里选择80%的样本作为训练集。 14. `X_train, X_test = np.split(X, [data])`:将特征矩阵X按照给定索引位置data进行分割,分成训练集X_train和测试集X_test。 15. `y_train, y_test = np.split(y, [data])`:将目标变量y按照给定索引位置data进行分割,分成训练集y_train和测试集y_test。 16. `model_svm = SVC(C=1.0, kernel='linear')`:创建一个线性核的支持向量机模型,并设置正则化参数C为1.0。 17. `model_svm.fit(X_train, y_train)`:使用训练集训练支持向量机模型。 18. `Accuracy = model_svm.score(X_test, y_test)`:计算测试集上的准确性得分。 19. `print('Linear Accuracy = ', Accuracy)`:打印线性核支持向量机模型在测试集上的准确性得分。 20. `X_test_h = model_svm.predict(X_test)`:使用训练好的模型对测试集进行预测。

相关推荐

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

最新推荐

recommend-type

scrapy练习 获取喜欢的书籍

主要是根据网上大神做的 项目一 https://zhuanlan.zhihu.com/p/687522335
recommend-type

基于PyTorch的Embedding和LSTM的自动写诗实验.zip

基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
recommend-type

基于Java的云计算平台设计源码

云计算平台设计源码:该项目基于Java开发,包含126个文件,主要使用Java、JavaScript、HTML和CSS语言。该项目是一个云计算平台,旨在为用户提供一个高效、灵活的云计算服务,包括资源管理、虚拟化技术、分布式存储等功能,以满足不同用户的计算和存储需求。
recommend-type

grpcio-1.41.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

grpcio-1.44.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。