怎么用数据集ObesityDataSet_raw_and_data_sinthetic.csv中的'Age','FAVC','FCVC','CH2O','CALC'这几个变量利用神经网络模型来预测和'NObeyesdad'变量的关系,输出代码
时间: 2023-09-05 11:09:05 浏览: 314
以下是利用神经网络模型来预测'NObeyesdad'变量和'Age','FAVC','FCVC','CH2O','CALC'等变量之间关系的Python代码:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
# 读取数据集文件
data = pd.read_csv('ObesityDataSet_raw_and_data_sinthetic.csv')
# 提取需要的变量
X = data[['Age','FAVC','FCVC','CH2O','CALC']]
y = data['NObeyesdad']
# 数据标准化处理
X = (X - X.mean()) / X.std()
y = pd.get_dummies(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 构建神经网络模型
model = Sequential()
model.add(Dense(64, input_dim=5, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(7, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=32, verbose=1, validation_data=(X_test, y_test))
# 评估模型性能
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
该代码中,首先读取了数据集文件,并提取了需要的变量'Age','FAVC','FCVC','CH2O','CALC'和目标变量'NObeyesdad'。然后进行了数据标准化处理,并将目标变量转换为one-hot编码。接着,将数据集划分为训练集和测试集,使用Keras库构建了一个神经网络模型,并训练了50个epochs。最后,评估了模型的性能。
阅读全文