AttributeError: module 'numba.cuda' has no attribute 'filter'
时间: 2023-08-27 15:19:47 浏览: 205
非常抱歉,我之前给出的代码存在错误。Numba库中没有名为`filter`的函数来应用滤波器。为了在GPU上应用滤波器,我们可以使用CuPy库的`cupyx.scipy.signal.lfilter`函数。
请尝试使用以下修改后的代码:
```python
import numpy as np
import cupy as cp
from cupyx.scipy import signal
class Channelizer(object):
"""
Channelizer object.
\param filter_coeffs: Filter coefficient array.
"""
_channel_num: int
_filter_coeffs: np.ndarray
def __init__(
self,
filter_coeffs: np.ndarray,
channel_num: int = 8):
assert isinstance(channel_num, int)
self._filter_coeffs = np.reshape(filter_coeffs, (channel_num, -1), order='F')
self._channel_num = channel_num
@RunTime # 计算代码运行时间
def dispatch(
self,
data: np.ndarray
) -> np.ndarray:
# Make the data length an integer multiple of the number of channels.
disp_len = int(np.ceil(data.size / self._channel_num))
patch_size = int(disp_len * self._channel_num - data.size)
patch_data = np.concatenate((data, np.zeros(patch_size)))
reshape_data = np.reshape(patch_data, (self._channel_num, -1), order='F')
polyphase_data = cp.flipud(cp.asarray(reshape_data))
nv = cp.arange(disp_len)
prefilt_data = polyphase_data * ((-1) ** nv)
# Polyphase filter bank
filt_data = cp.zeros(prefilt_data.shape, dtype=complex)
for k in range(self._channel_num):
filt_data[k] = signal.lfilter(self._filter_coeffs[k], [1.0], prefilt_data[k])
postfilt_data = cp.zeros(prefilt_data.shape, dtype=complex)
for k in range(self._channel_num):
postfilt_data[k] = filt_data[k] * ((-1) ** k) * cp.exp(-1j * np.pi * k / self._channel_num)
dispatch_data = cp.fft.fft(postfilt_data, axis=0)
return cp.asnumpy(dispatch_data)
```
在上述代码中,我们使用`cupyx.scipy.signal.lfilter`来应用滤波器,该函数可以在GPU上运行。我们还更新了导入语句,以确保正确导入相关函数。
请注意,这只是一个修改建议,并不能保证一定能解决问题。如果问题仍然存在,请提供详细的错误信息和相关代码,以便我们能更好地帮助您。
阅读全文