多目标算法代码matlab
时间: 2023-12-06 09:37:30 浏览: 111
以下是两种多目标算法的Matlab代码示例:
1. 多目标萤火虫算法(MOFA_MOCS)
```matlab
% MOFA_MOCS.m
% 多目标萤火虫算法(MOFA_MOCS)的Matlab实现
% 初始化参数
N = 50; % 萤火虫数量
D = 10; % 问题维度
T = 100; % 迭代次数
alpha = 0.2; % 吸引度系数
beta0 = 1; % 初始发光强度
gamma = 0.97; % 发光强度衰减系数
lb = -5 * ones(1, D); % 搜索空间下界
ub = 5 * ones(1, D); % 搜索空间上界
% 初始化萤火虫位置和发光强度
x = repmat(lb, N, 1) + rand(N, D) .* repmat(ub - lb, N, 1);
I = beta0 * ones(N, 1);
% 迭代优化
for t = 1:T
% 计算吸引度
dist = pdist2(x, x);
[~, idx] = sort(dist, 2);
for i = 1:N
j = idx(i, 2);
if I(i) < I(j)
r = norm(x(i, :) - x(j, :));
I(i) = I(i) + alpha / r^2;
x(i, :) = x(i, :) + alpha * (x(j, :) - x(i, :)) / r + 0.01 * randn(1, D);
end
end
% 更新发光强度
I = gamma * I;
% 限制搜索空间
x = max(x, lb);
x = min(x, ub);
end
% 输出最优解
pareto_front = pareto_front(x);
disp(pareto_front);
% 定义Pareto前沿函数
function front = pareto_front(x)
[N, D] = size(x);
front = true(N, 1);
for i = 1:N
for j = 1:N
if i ~= j
if all(x(i, :) <= x(j, :)) && any(x(i, :) < x(j, :))
front(i) = false;
break;
end
end
end
end
end
```
2. 多目标灰狼算法(MOWA)
```matlab
% MOWA.m
% 多目标灰狼算法(MOWA)的Matlab实现
% 初始化参数
N = 50; % 灰狼数量
D = 10; % 问题维度
T = 100; % 迭代次数
lb = -5 * ones(1, D); % 搜索空间下界
ub = 5 * ones(1, D); % 搜索空间上界
% 初始化灰狼位置
x = repmat(lb, N, 1) + rand(N, D) .* repmat(ub - lb, N, 1);
% 迭代优化
for t = 1:T
% 计算适应度
f = zeros(N, 2);
for i = 1:N
f(i, 1) = sum(x(i, :).^2);
f(i, 2) = sum((x(i, :) - 1).^2);
end
% 计算距离和排序
dist = pdist2(f, f);
[~, idx] = sort(dist, 2);
% 更新灰狼位置
alpha = 2 - t * (2 / T); % 狼群层次
for i = 1:N
A = 2 * alpha * rand(1, D) - alpha;
C = 2 * rand(1, D);
p = randi([1, N]);
D = abs(C .* x(idx(i, 2), :) - x(idx(i, 1), :));
x(i, :) = x(idx(i, 1), :) + A .* D + 0.01 * randn(1, D);
end
% 限制搜索空间
x = max(x, lb);
x = min(x, ub);
end
% 输出最优解
pareto_front = pareto_front(x);
disp(pareto_front);
% 定义Pareto前沿函数
function front = pareto_front(x)
[N, D] = size(x);
front = true(N, 1);
for i = 1:N
for j = 1:N
if i ~= j
if all(x(i, :) <= x(j, :)) && any(x(i, :) < x(j, :))
front(i) = false;
break;
end
end
end
end
end
```
阅读全文