int n=...; float p[1..n]=...; float l[1..n]=...; float u[1..n]=...; {int}m1=...; {int}m2=...; {int}m3=...; {int}m4=...; {int}m5=...; int total=...; range k1=1..total; float c[k1]=...; float f[k1]=...; dvar boolean x[1..n][k1]; dvar float+ y[1..n][k1]; maximize sum(i in 1..n,j in k1)p[i]*f[j]*y[i][j]; subject to{ forall(i in 1..n,j in k1)y[i][j]<=c[j]*x[i][j]; forall(j in k1)sum(i in 1..n)y[i][j]<=c[j]; forall(i in 1..n)l[i]<=sum(j in k1)y[i][j]<=u[i]; forall(i in 1..n,t in m1,j1 in m1,j2 in m1:j1<t<j2){x[i][t]>=x[i][j1]+x[i][j2]-1; y[i][t]==c[t];} forall(i in 1..n,t in m2,j1 in m2,j2 in m2:j1<t<j2){x[i][t]>=x[i][j1]+x[i][j2]-1; y[i][t]==c[t];} forall(i in 1..n,t in m3,j1 in m3,j2 in m3:j1<t<j2){x[i][t]>=x[i][j1]+x[i][j2]-1; y[i][t]==c[t];} forall(i in 1..n,t in m4,j1 in m4,j2 in m4:j1<t<j2){x[i][t]>=x[i][j1]+x[i][j2]-1; y[i][t]==c[t];} forall(i in 1..n,t in m5,j1 in m5,j2 in m5:j1<t<j2){x[i][t]>=x[i][j1]+x[i][j2]-1; y[i][t]==c[t];} forall(i in 1..n){ forall(j2 in m1)sum(j1 in m2 union m3 union m4 union m5)x[i][j1]<=4*8*(1-x[i][j2]); forall(j2 in m2)sum(j1 in m1 union m3 union m4 union m5)x[i][j1]<=4*8*(1-x[i][j2]); forall(j2 in m3)sum(j1 in m1 union m2 union m4 union m5)x[i][j1]<=4*8*(1-x[i][j2]); forall(j2 in m4)sum(j1 in m1 union m2 union m3 union m5)x[i][j1]<=4*8*(1-x[i][j2]); forall(j2 in m5)sum(j1 in m1 union m2 union m3 union m4)x[i][j1]<=4*8*(1-x[i][j2]); } sum(j in k1,i in 1..n)y[i][j]==sum(j in k1)c[j]; }
时间: 2023-10-09 14:08:23 浏览: 279
这是一个数学优化问题的代码,其中使用了整数规划和线性规划的技术,目标是最大化一个特定函数的值,同时满足一系列约束条件。代码中包含了数值数组、变量、限制条件等多个元素,其中:
- 变量n表示数值数组p、l、u的长度;
- 数值数组p、l、u、c、f分别表示不同的数值;
- 变量m1~m5表示一些整数数组的长度;
- 变量total表示数值数组c、f的长度;
- x和y分别为二维布尔型和浮点型变量;
- maximize表示目标是最大化目标函数的值;
- subject to后面的所有限制条件表示在满足这些条件的情况下,目标函数取得最大值。
该代码的具体作用和实现方式需要根据具体的场景和数据进行分析和理解。
阅读全文