Vector3d p_desired = INIT_T.block<3, 1>(0, 3) + Vector3d{{-0.01, 0, 0}};

时间: 2024-03-28 21:38:22 浏览: 17
这是一行 C++ 代码,其中包括一个名为 p_desired 的 Vector3d 变量,其值为 INIT_T 矩阵的第 0 列到第 2 列(即前三列)和第 3 行(即第四行)组成的 3x1 向量加上一个值为 {-0.01, 0, 0} 的向量。这段代码可能用于机器人运动规划中,用于计算机器人末端执行器的期望位置。
相关问题

D_loss_temp = -tf.reduce_mean(M * tf.math.log(D_prob + 1e-8) \ + (1 - M) * tf.math.log(1. - D_prob + 1e-8))

This is a line of code that calculates the loss for a discriminator model in a conditional generative adversarial network (cGAN). The cGAN consists of two models, a generator and a discriminator, that are trained together to generate output images that match a desired input condition. The D_loss_temp variable represents the temporary value of the discriminator loss function. The loss function is calculated using the binary cross-entropy formula, which compares the predicted probability of a real or fake image with the true label. The tf.reduce_mean function calculates the mean value of the loss over all the samples in a batch. The M variable represents the mask that is applied to the loss function for the conditional aspect of the cGAN. It is a binary matrix that is the same size as the output image, where a value of 1 represents the areas of the image that need to be generated and a value of 0 represents the areas that can be left unchanged. The D_prob variable represents the predicted probability of the discriminator model that the generated image is real. The 1e-8 term is added to prevent numerical instability when taking the logarithm of small values. Overall, this line of code is a crucial step in updating the weights of the discriminator model during the training process of a cGAN.

% 设定模糊控制器参数T_min = 18;T_max = 28;T_desired = 25;P_min = -1;P_max = 1;% 设定模糊控制器输入和输出变量T = linspace(T_min, T_max, 100);P = linspace(P_min, P_max, 100);T_error = linspace(-5, 5, 100);P_change = linspace(-0.5, 0.5, 100);% 设定模糊控制器规则库rule_list = [1, 1, 1, 1; 1, 2, 1, 1; 2, 2, 2, 1; 2, 3, 3, 1; 3, 3, 3, 1; 3, 4, 4, 1; 4, 4, 4, 1; 4, 4, 4, 1];% 设定初始值T_current = 20;P_current = 0;% 设定时间步长和仿真时间dt = 0.1;t_end = 100;% 计算模糊控制量for t = 0:dt:t_end % 计算误差 T_error_current = T_desired - T_current; % 计算模糊控制量 for i = 1:length(T) if T_error_current >= T(i) && T_error_current < T(i+1) A1 = (T(i+1) - T_error_current) / (T(i+1) - T(i)); A2 = (T_error_current - T(i)) / (T(i+1) - T(i)); for j = 1:length(P) if P_current >= P(j) && P_current < P(j+1) B1 = (P(j+1) - P_current) / (P(j+1) - P(j)); B2 = (P_current - P(j)) / (P(j+1) - P(j)); rule = rule_list(i,j); P_change_current = P_change(rule); break; end end break; end end % 更新空调功率 P_current = P_current + P_change_current; % 更新当前温度 T_current = T_current + P_current * dt;end% 绘制温度变化曲线plot(0:dt:t_end, T_current);xlabel('Time (s)');ylabel('Temperature (C)');title('Temperature Control with Fuzzy Controller');

这段代码是一个基于模糊控制的温度控制系统的仿真代码。其中,模糊控制器的输入变量包括当前温度偏差(T_error)和当前空调功率(P_current),输出变量为空调功率变化量(P_change)。代码中的模糊控制器规则库(rule_list)是一个8x4的矩阵,其中每一行代表一个模糊规则,第一列和第二列分别表示T_error和P_current所属的模糊集合,第三列表示P_change所属的模糊集合,第四列表示该规则的权重。在每个时间步长中,根据当前温度偏差和空调功率的模糊集合,从规则库中选择相应的规则,并计算出相应的空调功率变化量,从而更新当前空调功率和当前温度,并绘制温度随时间的变化曲线。

相关推荐

请详细解释下这段代码Rect<float> Framer::ComputeActiveCropRegion(int frame_number) { const float min_crop_size = 1.0f / options_.max_zoom_ratio; const float new_x_crop_size = std::clamp(region_of_interest_.width * options_.target_crop_to_roi_ratio, min_crop_size, 1.0f); const float new_y_crop_size = std::clamp(region_of_interest_.height * options_.target_crop_to_roi_ratio, min_crop_size, 1.0f); // We expand the raw crop region to match the desired output aspect ratio. const float target_aspect_ratio = static_cast<float>(options_.input_size.height) / static_cast<float>(options_.input_size.width) * static_cast<float>(options_.target_aspect_ratio_x) / static_cast<float>(options_.target_aspect_ratio_y); Rect<float> new_crop; if (new_x_crop_size <= new_y_crop_size * target_aspect_ratio) { new_crop.width = std::min(new_y_crop_size * target_aspect_ratio, 1.0f); new_crop.height = new_crop.width / target_aspect_ratio; } else { new_crop.height = std::min(new_x_crop_size / target_aspect_ratio, 1.0f); new_crop.width = new_crop.height * target_aspect_ratio; } const float roi_x_mid = region_of_interest_.left + (region_of_interest_.width / 2); const float roi_y_mid = region_of_interest_.top + (region_of_interest_.height / 2); new_crop.left = std::clamp(roi_x_mid - (new_crop.width / 2), 0.0f, 1.0f - new_crop.width); new_crop.top = std::clamp(roi_y_mid - (new_crop.height / 2), 0.0f, 1.0f - new_crop.height); const float normalized_crop_strength = std::powf(options_.crop_filter_strength, ElapsedTimeMs(timestamp_) / kUnitTimeSlice); active_crop_region_.left = IirFilter(active_crop_region_.left, new_crop.left, normalized_crop_strength); active_crop_region_.top = IirFilter(active_crop_region_.top, new_crop.top, normalized_crop_strength); active_crop_region_.width = IirFilter( active_crop_region_.width, new_crop.width, normalized_crop_strength); active_crop_region_.height = IirFilter( active_crop_region_.height, new_crop.height, normalized_crop_strength); timestamp_ = base::TimeTicks::Now(); if (VLOG_IS_ON(2)) { DVLOGFID(2, frame_number) << "region_of_interest=" << region_of_interest_; DVLOGFID(2, frame_number) << "new_crop_region=" << new_crop; DVLOGFID(2, frame_number) << "active_crop_region=" << active_crop_region_; } return active_crop_region_; }

帮我解释一下 PID_TypeDef g_location_pid; /* 位置PID参数结构体*/ /** * @brief 初始化PID参数 * @param 无 * @retval 无 / void pid_init(void) { /位置环初始化/ g_location_pid.SetPoint = (float)(50PPM); /* 设定目标Desired Value*/ g_location_pid.ActualValue = 0.0; /* 期望值*/ g_location_pid.SumError = 0.0; /* 积分值*/ g_location_pid.Error = 0.0; /* Error[1]/ g_location_pid.LastError = 0.0; / Error[-1]/ g_location_pid.PrevError = 0.0; / Error[-2]/ g_location_pid.Proportion = L_KP; / 比例常数 Proportional Const*/ g_location_pid.Integral = L_KI; /* 积分常数 Integral Const*/ g_location_pid.Derivative = L_KD; /* 微分常数 Derivative Const*/ g_location_pid.IngMax = 20; g_location_pid.IngMin = -20; g_location_pid.OutMax = 150; /* 输出限制 / g_location_pid.OutMin = -150; } /* * 函数名称:位置闭环PID控制设计 * 输入参数:当前控制量 * 返 回 值:目标控制量 * 说 明:无 */ int32_t increment_pid_ctrl(PID_TypeDef PID,float Feedback_value) { PID->Error = (float)(PID->SetPoint - Feedback_value); / 偏差 / #if INCR_LOCT_SELECT PID->ActualValue += (PID->Proportion * (PID->Error - PID->LastError)) / E[k]项 / + (PID->Integral * PID->Error) / E[k-1]项 / + (PID->Derivative * (PID->Error - 2 * PID->LastError + PID->PrevError)); / E[k-2]项 / PID->PrevError = PID->LastError; / 存储误差,用于下次计算 / PID->LastError = PID->Error; #else PID->SumError += PID->Error; if(PID->SumError > PID->IngMax) { PID->SumError = PID->IngMax; } else if(PID->SumError < PID->IngMin) { PID->SumError = PID->IngMin; } PID->ActualValue = (PID->Proportion * PID->Error) / E[k]项 / + (PID->Integral * PID->SumError) / E[k-1]项 / + (PID->Derivative * (PID->Error - PID->LastError)); / E[k-2]项 / PID->LastError = PID->Error; #endif if(PID->ActualValue > PID->OutMax) { PID->ActualValue = PID->OutMax; } else if(PID->ActualValue < PID->OutMin) { PID->ActualValue = PID->OutMin; } return ((int32_t)(PID->ActualValue)); / 返回实际控制数值 */ }

最新推荐

recommend-type

基于OpenGL的C语言的魔方项目.zip

C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
recommend-type

QT-qtablewidget表头添加复选框QHeaderView

在 Qt 框架中,要在 QTableWidget的表头中添加复选框,可以通过继承 QHeaderView 并重写 paintSection 方法来实现。 介绍一种继承 QHeaderView的方法分别实现QTableWidget中添加复选框,可全选/全不选/部分选。
recommend-type

分段划线测量表格通用版.doc

分段划线测量表格通用版.doc
recommend-type

扫雷小游戏(JAVA SE).zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依