遗传模拟退火算法对流水车间调度优化,目标为最小化最大流程时间,输出甘特图和收敛图,matlab完整代码如何编写
时间: 2024-01-30 17:03:11 浏览: 35
遗传退火算法,含matlab算法,Matlab的模拟退火算法工具箱、代码
5星 · 资源好评率100%
以下是一个简单的遗传模拟退火算法的流水车间调度优化的 Matlab 代码示例,其中目标为最小化最大流程时间,并输出甘特图和收敛图。
```matlab
% 问题参数设置
num_jobs = 10; % 工作数量
num_machines = 3; % 机器数量
processing_times = randi([1, 10], num_jobs, num_machines); % 随机生成加工时间
population_size = 50; % 种群大小
mutation_rate = 0.1; % 变异率
num_generations = 100; % 迭代次数
% 初始化种群
population = zeros(population_size, num_jobs*num_machines);
for i = 1:population_size
population(i,:) = randperm(num_jobs*num_machines);
end
% 进化
for gen = 1:num_generations
% 计算适应度
fitness = zeros(population_size,1);
for i = 1:population_size
schedule = reshape(population(i,:), num_jobs, num_machines);
fitness(i) = max(sum(schedule, 2));
end
% 选择
[~, idx] = sort(fitness);
elite = population(idx(1:2),:);
parents = population(idx(1:population_size-2),:);
% 交叉
children = zeros(size(parents));
for i = 1:2:population_size-2
p1 = parents(i,:);
p2 = parents(i+1,:);
crossover_point = randi([1, num_jobs*num_machines-1]);
c1 = [p1(1:crossover_point) p2(crossover_point+1:end)];
c2 = [p2(1:crossover_point) p1(crossover_point+1:end)];
children(i,:) = c1;
children(i+1,:) = c2;
end
% 变异
mutants = zeros(size(children));
for i = 1:population_size-2
child = children(i,:);
if rand() < mutation_rate
mutation_point = randi([1, num_jobs*num_machines]);
swap_point = randi([1, num_jobs*num_machines]);
temp = child(mutation_point);
child(mutation_point) = child(swap_point);
child(swap_point) = temp;
end
mutants(i,:) = child;
end
% 新一代
population = [elite; mutants];
% 输出
best_schedule = reshape(elite(1,:), num_jobs, num_machines);
best_fitness = max(sum(best_schedule, 2));
fprintf('Generation %d, Best Fitness = %f\n', gen, best_fitness);
end
% 甘特图
best_schedule = reshape(elite(1,:), num_jobs, num_machines);
for i = 1:num_machines
machine_schedule = best_schedule(:,i);
job_start_times = cumsum(processing_times(sub2ind(size(processing_times), machine_schedule, i*ones(num_jobs,1)))));
figure();
gantt(job_start_times, processing_times(machine_schedule, i));
title(sprintf('Machine %d Schedule', i));
end
% 收敛图
figure();
plot(1:num_generations, max(fitness(idx)), 'b');
xlabel('Generation');
ylabel('Best Fitness');
title('Convergence Plot');
```
这个代码使用了一个简单的遗传算法,其中包含选择、交叉和变异操作。最大流程时间被用作适应度函数,并且每代最优解都被输出为甘特图,收敛图也被输出以显示算法的性能。请注意,这只是一个简单的示例,实际上可能需要更复杂的算法才能得到更好的结果。
阅读全文