编写pytorch代码,df读取数据集dataset,通过滑动窗口划分法划分为训练集、验证集和测试集,窗口为30,步长为15,比例为0.7:0.2:0.1
时间: 2024-03-27 15:41:30 浏览: 72
划分数据集为测试集、验证集、训练集
下面是一个示例代码,实现了通过滑动窗口划分法将数据集划分为训练集、验证集和测试集:
```python
import torch
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
# 返回数据的特征和标签
return self.data[index][:-1], self.data[index][-1]
def sliding_window_split(data, window_size=30, stride=15, train_ratio=0.7, val_ratio=0.2, test_ratio=0.1):
# 计算数据集的总长度、训练集长度、验证集长度和测试集长度
data_len = len(data)
train_len = int((data_len - window_size) * train_ratio // stride) * stride + window_size
val_len = int((data_len - window_size) * val_ratio // stride) * stride + window_size
test_len = data_len - train_len - val_len + window_size
# 划分数据集为训练集、验证集和测试集
train_data = data[:train_len]
val_data = data[train_len:train_len+val_len]
test_data = data[train_len+val_len:]
# 将训练集、验证集和测试集分别按照窗口大小和步长划分为多个样本
train_samples = [train_data[i:i+window_size+1] for i in range(0, train_len-window_size+1, stride)]
val_samples = [val_data[i:i+window_size+1] for i in range(0, val_len-window_size+1, stride)]
test_samples = [test_data[i:i+window_size+1] for i in range(0, test_len-window_size+1, stride)]
# 将样本转化为Dataset格式
train_dataset = MyDataset(train_samples)
val_dataset = MyDataset(val_samples)
test_dataset = MyDataset(test_samples)
return train_dataset, val_dataset, test_dataset
# 读取数据集
df = ...
# 将数据集转化为numpy数组格式
data = df.values.astype(float)
# 划分数据集为训练集、验证集和测试集
train_dataset, val_dataset, test_dataset = sliding_window_split(data, window_size=30, stride=15, train_ratio=0.7, val_ratio=0.2, test_ratio=0.1)
# 创建DataLoader
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False)
```
上述代码首先定义了一个`MyDataset`类,用于将数据集转化为Dataset格式。然后定义了`sliding_window_split`函数,用于按照滑动窗口划分法将数据集划分为训练集、验证集和测试集,并将每个样本转化为Dataset格式。最后,使用PyTorch的DataLoader将训练集、验证集和测试集转化为可迭代的数据加载器。
阅读全文