用Pytorch编写DeepAR模型预测航材地代码
时间: 2023-06-11 20:07:32 浏览: 131
deep learning with pytorch源代码
以下是用 PyTorch 实现的 DeepAR 模型预测航材地的代码。
首先,我们需要导入需要的库和模块:
```python
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
```
接下来,我们定义一个数据集类,用于加载和处理数据:
```python
class AircraftDataset(Dataset):
def __init__(self, data_path):
self.data = pd.read_csv(data_path)
self.seq_len = 60 # sequence length
self.n_features = 6 # number of features
def __len__(self):
return len(self.data) - self.seq_len
def __getitem__(self, idx):
x = self.data.iloc[idx : idx + self.seq_len, :self.n_features].values
y = self.data.iloc[idx + self.seq_len, -1]
return torch.tensor(x, dtype=torch.float32), torch.tensor(y, dtype=torch.float32)
```
接着,我们定义一个 LSTM 模型,用于时间序列预测:
```python
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = out[:, -1, :]
out = self.fc(out)
return out
```
然后,我们定义一个函数,用于训练模型:
```python
def train(model, train_loader, val_loader, n_epochs, lr):
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.MSELoss()
best_val_loss = np.inf
for epoch in range(n_epochs):
train_loss = 0.0
val_loss = 0.0
# training loop
model.train()
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
out = model(x)
loss = criterion(out, y)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= len(train_loader)
# validation loop
model.eval()
with torch.no_grad():
for i, (x, y) in enumerate(val_loader):
out = model(x)
loss = criterion(out, y)
val_loss += loss.item()
val_loss /= len(val_loader)
print(f"Epoch {epoch+1}/{n_epochs}, train_loss: {train_loss:.3f}, val_loss: {val_loss:.3f}")
# save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), "best_model.pt")
```
最后,我们定义一个函数,用于加载数据并训练模型:
```python
def main():
data_path = "aircraft_data.csv"
dataset = AircraftDataset(data_path)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
model = LSTM(dataset.n_features, 64, 1)
n_epochs = 100
lr = 0.001
train(model, train_loader, val_loader, n_epochs, lr)
```
以上就是用 PyTorch 实现的 DeepAR 模型预测航材地的代码。需要注意的是,这里只是一个简单的示例,实际应用中需要根据具体情况进行修改和调整。
阅读全文