df_no=df[df.y==0]
时间: 2023-10-08 14:12:18 浏览: 88
这是一行Python代码,它的作用是从DataFrame对象`df`中选取出`y`列值为0的行,并将结果赋值给`df_no`。`df`是一个DataFrame对象,`df.y`是`df`中的`y`列,`df.y==0`是一个布尔数组,表示`y`列中每个元素是否等于0,`df[df.y==0]`则是通过布尔数组来选取符合条件的行构成一个新的DataFrame对象。最后,将结果赋值给`df_no`变量。
相关问题
pos_counts = df.loc[df.y.values == 'yes', col].value_counts() neg_counts = df.loc[df.y.values == 'no', col].value_counts() 这段什么意思
这段代码用于计算数据框 df 中某一列 col 中两种分类('yes' 和 'no')的频数(出现次数)。
- df.loc[df.y.values == 'yes', col]:这部分代码首先通过 df.y.values == 'yes' 条件筛选出 df 中 y 列中值为 'yes' 的所有行,并且只选择其中的 col 列。
- .value_counts():对筛选出的结果进行频数计算,返回一个 Series 对象,其中每个唯一值都是索引标签,其对应的值是该值出现的次数。
因此,pos_counts 和 neg_counts 分别表示 df 中 y 列中值为 'yes' 和 'no' 的行中 col 列的频数。
df = data[tot_feature].dropna() feature_list = random_subspace(tot_feature, no_of_subspaces, min_features, max_features) outlier_labels = pd.DataFrame(index=df.index) model = LocalOutlierFactor(n_neighbors=n_neighbors, contamination=contamination, n_jobs=-1) for i in range(no_of_subspaces): df_temp = df[feature_list[i]] y_pred = model.fit_predict(df_temp) outlier_labels[str("Model " + str(i + 1))] = pd.DataFrame(y_pred, index=df.index) outlier_labels["Total"] = outlier_labels.sum(axis=1) labels = [] for i in outlier_labels["Total"]: if i < 0: labels.append("Outlier") else: labels.append("Inlier") df['label'] = pd.DataFrame(labels, index=df.index) data['label'] = df['label'] data['label'] = data['label'].replace(np.nan, "Undetermined") if separate_df: outlier_df = df.loc[df[df["label"] == "Outlier"].index].drop(['label'], axis=1) inlier_df = df.loc[df[df["label"] == "Inlier"].index].drop(['label'], axis=1) print(df[df["label"] == "Outlier"].index) return (outlier_df,inlier_df)什么原因是
这段代码的作用是使用局部离群因子(Local Outlier Factor,LOF)算法对数据进行异常检测,并将结果标记为“Outlier”或“Inlier”。具体来说,该代码首先从数据中选择一些特征组成多个子空间,然后在每个子空间中使用LOF算法进行异常检测。最后,将所有子空间的结果进行累加,得到每个数据点的总异常分数,如果总异常分数小于0,则将该数据点标记为“Outlier”,否则标记为“Inlier”。
这段代码中出现错误的原因不太清楚,需要更多的上下文信息才能确定具体原因。
阅读全文