model = LocalOutlierFactor(n_neighbors=n_neighbors, contamination=contamination, n_jobs=-1) for i in range(no_of_subspaces): df_temp = df[feature_list[i]] y_pred = model.fit_predict(df_temp) outlier_labels[str("Model " + str(i + 1))] = pd.DataFrame(y_pred, index=df.index) outlier_labels["Total"] = outlier_labels.sum(axis=1)
时间: 2023-06-25 21:08:09 浏览: 80
使用sklearn的cross_val_score进行交叉验证实例
这段代码是使用局部离群点因子(Local Outlier Factor)算法进行异常检测。其中,n_neighbors参数表示每个样本的邻居个数,contamination参数表示异常值的比例,n_jobs参数表示并行计算的数量。
代码中使用了多个子空间(subspaces),每个子空间使用一个模型进行异常检测。具体来说,代码首先使用feature_list将数据划分为多个子空间,然后对每个子空间使用一个局部离群点因子模型进行异常检测,得到每个数据点在当前子空间中是否为异常点的预测结果。最后,将所有子空间的预测结果相加,得到每个数据点的总异常得分(Total),用于判断其是否为异常点。
阅读全文