df = data[tot_feature].dropna() feature_list = random_subspace(tot_feature, no_of_subspaces, min_features, max_features) outlier_labels = pd.DataFrame(index=df.index) model = LocalOutlierFactor(n_neighbors=n_neighbors, contamination=contamination, n_jobs=-1) for i in range(no_of_subspaces): df_temp = df[feature_list[i]] y_pred = model.fit_predict(df_temp) outlier_labels[str("Model " + str(i + 1))] = pd.DataFrame(y_pred, index=df.index) outlier_labels["Total"] = outlier_labels.sum(axis=1) labels = [] for i in outlier_labels["Total"]: if i < 0: labels.append("Outlier") else: labels.append("Inlier") df['label'] = pd.DataFrame(labels, index=df.index) data['label'] = df['label'] data['label'] = data['label'].replace(np.nan, "Undetermined") if separate_df: outlier_df = df.loc[df[df["label"] == "Outlier"].index].drop(['label'], axis=1) inlier_df = df.loc[df[df["label"] == "Inlier"].index].drop(['label'], axis=1) print(df[df["label"] == "Outlier"].index) return (outlier_df,inlier_df)什么原因是
时间: 2023-06-25 18:03:50 浏览: 89
这段代码的作用是使用局部离群因子(Local Outlier Factor,LOF)算法对数据进行异常检测,并将结果标记为“Outlier”或“Inlier”。具体来说,该代码首先从数据中选择一些特征组成多个子空间,然后在每个子空间中使用LOF算法进行异常检测。最后,将所有子空间的结果进行累加,得到每个数据点的总异常分数,如果总异常分数小于0,则将该数据点标记为“Outlier”,否则标记为“Inlier”。
这段代码中出现错误的原因不太清楚,需要更多的上下文信息才能确定具体原因。
相关问题
解释代码: def validate(self, dataloader): self.nnet.eval() logger.info("Evaluating...") tot_loss = 0 num_batches = len(dataloader) # do not need to keep gradient with th.no_grad(): for mix_spect, tgt_index, vad_masks in dataloader: mix_spect = mix_spect.cuda() if isinstance( mix_spect, PackedSequence) else mix_spect.to(device) tgt_index = tgt_index.to(device) vad_masks = vad_masks.to(device) # mix_spect = mix_spect * vad_masks net_embed = self.nnet(mix_spect) cur_loss = self.loss(net_embed, tgt_index, vad_masks) tot_loss += cur_loss.item() return tot_loss / num_batches, num_batches
这段代码是一个Python类的方法。方法名为validate,参数为dataloader,即数据加载器。
在方法中,首先将神经网络模型设置为评估模式,即不进行训练。然后打印一条日志信息,表示正在进行评估。
接着初始化总损失为0,以及获取数据加载器中的批次数量。
if cfg.deepsupervision: masks_preds = net(imgs) loss = 0 for masks_pred in masks_preds: tot_cross_entropy = 0 for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() #二值化处理 if cfg.n_classes > 1: sub_cross_entropy = F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item()#计算损失 else: sub_cross_entropy = dice_coeff(pred, true_mask.squeeze(dim=1)).item()#预测分割掩码和真实标签相似度,将两个结果转化为二值化的掩码,然后计算交集并集 tot_cross_entropy += sub_cross_entropy #计算总损失 tot_cross_entropy = tot_cross_entropy / len(masks_preds) #计算平均损失 tot += tot_cross_entropy #计算总平均损失 else: masks_pred = net(imgs) for true_mask, pred in zip(true_masks, masks_pred): pred = (pred > cfg.out_threshold).float() if cfg.n_classes > 1: tot += F.cross_entropy(pred.unsqueeze(dim=0), true_mask.unsqueeze(dim=0).squeeze(1)).item() else: tot += dice_coeff(pred, true_mask.squeeze(dim=1)).item() pbar.update(imgs.shape[0])
这段代码是语义分割任务中的损失计算部分,其中使用了深监督(Deep Supervision)的方法。在深监督中,一个模型通常会产生多个输出,每个输出都对应着不同的层或分支,在训练过程中,每个输出都会计算一次损失,并反向传播更新梯度。这个方法可以有效地加快模型的收敛速度,并提高模型的鲁棒性。
如果cfg.deepsupervision为True,表示使用深监督方法。代码首先使用网络net对输入图像imgs进行预测,得到多个预测掩码masks_pred。接下来,对于每一个预测掩码masks_pred,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot_cross_entropy。最后,将总的损失除以预测掩码的数量,得到平均损失tot_cross_entropy,并将它加到总平均损失tot中。
如果cfg.deepsupervision为False,表示不使用深监督方法。代码中仍然使用网络net对输入图像imgs进行预测,得到一个预测掩码masks_pred。接下来,计算它与真实掩码true_masks之间的交叉熵损失或Dice系数损失,并将它们累加得到总的损失tot。
最后,代码使用进度条pbar来显示训练的进度。其中pbar.update(imgs.shape[0])表示当前已经处理了多少张图片。
阅读全文