划分jaffe图片数据集的代码,划分为训练集、验证集和测试集
时间: 2023-09-27 12:08:47 浏览: 72
可以使用Python语言的scikit-learn库中的train_test_split函数进行划分,代码如下:
```
from sklearn.model_selection import train_test_split
# 将图片数据集和标签加载到x和y中
x = ... # 图片数据集
y = ... # 图片标签
# 将数据集划分为训练集、验证集和测试集,其中test_size参数表示测试集占总数据集的比例
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=42)
# 确认划分的结果
print("训练集数量:", len(x_train))
print("验证集数量:", len(x_val))
print("测试集数量:", len(x_test))
```
这段代码中,首先从scikit-learn库中导入了train_test_split函数。然后将图片数据集和标签加载到x和y中,调用train_test_split函数将数据集划分为训练集、验证集和测试集,其中test_size参数表示测试集占总数据集的比例。最后输出训练集、验证集和测试集的数量。
相关问题
写一个用pytorch,VGG16处理jaffe图片数据集的代码,在cpu上运行,划分训练集,验证集和测试集,给出准确率图,损失图和混淆矩阵
好的,我可以帮您完成这个任务。首先,您需要下载Jaffe数据集并安装PyTorch。然后,您可以按照以下步骤进行操作:
1.导入所需的库和模块。
```
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
```
2.定义数据转换。
```
transform = transforms.Compose(
[transforms.Grayscale(),
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
```
3.加载数据集。
```
data_path = 'jaffe'
train_set = torchvision.datasets.ImageFolder(root=data_path+'/train', transform=transform)
val_set = torchvision.datasets.ImageFolder(root=data_path+'/val', transform=transform)
test_set = torchvision.datasets.ImageFolder(root=data_path+'/test', transform=transform)
```
4.定义数据生成器。
```
train_loader = torch.utils.data.DataLoader(train_set, batch_size=8,
shuffle=True, num_workers=2)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=8,
shuffle=False, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=8,
shuffle=False, num_workers=2)
```
5.定义模型。
```
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.vgg = torchvision.models.vgg16(pretrained=True)
self.fc1 = torch.nn.Linear(1000, 7)
def forward(self, x):
x = self.vgg(x)
x = self.fc1(x)
return x
net = Net()
```
6.定义损失函数和优化器。
```
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
7.训练模型。
```
n_epochs = 20
train_loss = []
val_loss = []
train_accuracy = []
val_accuracy = []
for epoch in range(n_epochs):
running_loss = 0.0
correct = 0
total = 0
# Train
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_acc = correct/total
train_accuracy.append(train_acc)
train_loss.append(running_loss/len(train_loader))
# Evaluate on validation set
val_running_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for i, data in enumerate(val_loader, 0):
inputs, labels = data
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
val_total += labels.size(0)
val_correct += (predicted == labels).sum().item()
val_loss_batch = criterion(outputs, labels)
val_running_loss += val_loss_batch.item()
val_acc = val_correct/val_total
val_accuracy.append(val_acc)
val_loss.append(val_running_loss/len(val_loader))
print(f'Epoch {epoch+1}, Train Loss: {train_loss[-1]:.3f}, Val Loss: {val_loss[-1]:.3f}, Train Acc: {train_acc:.3f}, Val Acc: {val_acc:.3f}')
print('Finished Training')
```
8.测试模型。
```
test_correct = 0
test_total = 0
predicted = []
true = []
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = net(images)
_, pred = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (pred == labels).sum().item()
predicted.extend(pred.tolist())
true.extend(labels.tolist())
print(f'Test Accuracy: {test_correct/test_total:.3f}')
confusion = confusion_matrix(true, predicted)
print(f'Confusion Matrix:\n{confusion}')
```
9.绘制准确率图,损失图和混淆矩阵。
```
plt.figure()
plt.plot(range(n_epochs), train_accuracy, label='Train')
plt.plot(range(n_epochs), val_accuracy, label='Val')
plt.title('Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
plt.figure()
plt.plot(range(n_epochs), train_loss, label='Train')
plt.plot(range(n_epochs), val_loss, label='Val')
plt.title('Cross Entropy Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.figure()
plt.imshow(confusion, cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.xlabel('Predictions')
plt.ylabel('True Labels')
plt.xticks(np.arange(7), ('angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise'), rotation=45)
plt.show()
```
希望我的答案能够满足您的要求,有任何问题请随时与我联系。
将jaffe划分为训练集,验证集和测试集的代码
以下是将Jaffe数据集划分为训练集、验证集和测试集的Python代码:
```python
import os
import random
import shutil
# 数据集路径
data_dir = 'jaffe'
# 划分比例
train_ratio = 0.6
val_ratio = 0.2
test_ratio = 0.2
# 获取数据集列表
data_list = os.listdir(data_dir)
random.shuffle(data_list)
# 计算划分点
num_data = len(data_list)
num_train = int(num_data * train_ratio)
num_val = int(num_data * val_ratio)
num_test = num_data - num_train - num_val
# 划分数据集
train_list = data_list[:num_train]
val_list = data_list[num_train:num_train+num_val]
test_list = data_list[num_train+num_val:]
# 创建目标文件夹
train_dir = os.path.join(data_dir, 'train')
val_dir = os.path.join(data_dir, 'val')
test_dir = os.path.join(data_dir, 'test')
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
os.makedirs(test_dir, exist_ok=True)
# 复制文件到目标文件夹
for filename in train_list:
src_path = os.path.join(data_dir, filename)
dst_path = os.path.join(train_dir, filename)
shutil.copy(src_path, dst_path)
for filename in val_list:
src_path = os.path.join(data_dir, filename)
dst_path = os.path.join(val_dir, filename)
shutil.copy(src_path, dst_path)
for filename in test_list:
src_path = os.path.join(data_dir, filename)
dst_path = os.path.join(test_dir, filename)
shutil.copy(src_path, dst_path)
```
以上代码首先设置了数据集路径 `data_dir` 和划分比例 `train_ratio`、`val_ratio`、`test_ratio`。然后随机打乱数据集列表,并根据比例计算训练集、验证集和测试集的数量。接着创建目标文件夹,并将文件根据划分写入到对应的目标文件夹中。
阅读全文