写一个代码,用VGG16分析JAFFE数据集,将数据扩增十倍,并划分训练集、验证集和测试集
时间: 2023-06-06 12:06:13 浏览: 115
好的,这是一个计算机视觉的问题,我可以回答。以下是代码示例:
```python
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
from keras.layers import Dense, Flatten
from keras.models import Model
# 定义常量
batch_size = 32
num_classes = 7
epochs = 50
input_shape = (48, 48, 3)
# 加载数据集
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=30,
shear_range=0.3,
zoom_range=0.3,
width_shift_range=0.4,
height_shift_range=0.4,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory('data/train',
target_size=input_shape[:2],
batch_size=batch_size,
color_mode='rgb',
class_mode='categorical',
shuffle=True)
validation_generator = test_datagen.flow_from_directory('data/validation',
target_size=input_shape[:2],
batch_size=batch_size,
color_mode='rgb',
class_mode='categorical',
shuffle=True)
# 加载预训练的VGG16模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=input_shape)
# 添加新的全连接层
x = base_model.output
x = Flatten()(x)
predictions = Dense(num_classes, activation='softmax')(x)
# 创建新的模型
model = Model(inputs=base_model.input, outputs=predictions)
# 编译模型
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 训练模型
model.fit_generator(train_generator,
steps_per_epoch=train_generator.n // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=validation_generator.n // batch_size)
# 评估模型
test_generator = test_datagen.flow_from_directory('data/test',
target_size=input_shape[:2],
batch_size=batch_size,
color_mode='rgb',
class_mode='categorical',
shuffle=True)
test_loss, test_acc = model.evaluate_generator(test_generator, steps=test_generator.n // batch_size)
print('Test accuracy:', test_acc)
```
这段代码使用了ImageDataGenerator对图像进行增强,包括旋转、剪切、缩放、平移和水平反转等操作,使得训练集得到了扩增。使用VGG16模型作为基础模型,并添加一个新的全连接层。之后对模型进行编译,并使用生成器对模型进行训练和验证,最后对模型进行评估。
阅读全文