写一个代码,用VGG16分析JAFFE数据集,用tensorflow框架,将数据扩增十倍,并划分训练集、验证集和测试集,最后给出准确率变化图、损失图和混淆矩阵
时间: 2023-06-07 09:08:27 浏览: 110
好的,我了解您的要求。这是一个技术问题,我可以为您提供帮助。
以下是您需要的代码,用于使用VGG16模型对JAFFE数据集进行图像分类,并使用TensorFlow进行数据扩增和训练模型。请确保已安装 TensorFlow 和 Keras 库。
```
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.applications import VGG16
# 加载JAFFE数据集
def load_data():
data = np.load('data/jaffe_data.npy')
labels = np.load('data/jaffe_labels.npy')
return data, labels
# 数据扩增
def augment_data(data):
datagen = ImageDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest')
datagen.fit(data)
return datagen
# 定义VGG16模型
def build_model():
model = Sequential()
vgg16 = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3))
model.add(vgg16)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
model.summary()
return model
# 划分训练集和测试集
def split_data(data, labels):
num_samples = len(data)
idx = np.random.permutation(num_samples)
data = data[idx]
labels = labels[idx]
num_train = int(num_samples * 0.8)
num_val = int(num_samples * 0.1)
x_train = data[:num_train]
y_train = labels[:num_train]
x_val = data[num_train:num_train + num_val]
y_val = labels[num_train:num_train + num_val]
x_test = data[num_train + num_val:]
y_test = labels[num_train + num_val:]
return x_train, y_train, x_val, y_val, x_test, y_test
# 训练模型
def train_model(model, datagen, x_train, y_train, x_val, y_val):
batch_size = 32
epochs = 50
opt = RMSprop(lr=1e-5)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
steps_per_epoch=len(x_train) // batch_size, epochs=epochs,
validation_data=(x_val, y_val), verbose=1)
return history
# 评估模型
def evaluate_model(model, x_test, y_test):
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
# 绘制准确率变化图和损失图
def plot_history(history):
import matplotlib.pyplot as plt
plt.figure()
plt.plot(history.history['accuracy'], label='Training accuracy')
plt.plot(history.history['val_accuracy'], label='Validation accuracy')
plt.title('Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
plt.figure()
plt.plot(history.history['loss'], label='Training loss')
plt.plot(history.history['val_loss'], label='Validation loss')
plt.title('Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
# 绘制混淆矩阵
def plot_confusion_matrix(model, x_test, y_test):
from sklearn.metrics import confusion_matrix
import seaborn as sns
predictions = model.predict(x_test)
y_pred = np.argmax(predictions, axis=1)
y_true = np.argmax(y_test, axis=1)
cm = confusion_matrix(y_true, y_pred)
sns.heatmap(cm, annot=True)
# 主函数
if __name__ == '__main__':
data, labels = load_data()
datagen = augment_data(data)
x_train, y_train, x_val, y_val, x_test, y_test = split_data(data, labels)
model = build_model()
history = train_model(model, datagen, x_train, y_train, x_val, y_val)
plot_history(history)
evaluate_model(model, x_test, y_test)
plot_confusion_matrix(model, x_test, y_test)
```
注意,在第1行的“JAFFE数据集”路径中,您需要提供数据集文件的实际路径。然后,您可以在命令行中运行此代码,得到准确率变化图、损失图和混淆矩阵。如果您在运行代码时遇到任何问题,可以向我提问,我会尽力为您提供帮助。
阅读全文