Transformers python时间序列代码
时间: 2023-10-14 09:06:53 浏览: 231
以下是一个简单的 Transformers 模型的时间序列代码示例:
```python
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
class TimeSeriesDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
inputs = self.tokenizer.encode_plus(
item['text'],
add_special_tokens=True,
max_length=512,
padding='max_length',
return_attention_mask=True,
return_tensors='pt'
)
target = torch.tensor(item['target'])
return inputs, target
data = [
{'text': 'This is the first time point.', 'target': 0},
{'text': 'This is the second time point.', 'target': 1},
{'text': 'This is the third time point.', 'target': 0},
{'text': 'This is the fourth time point.', 'target': 1},
{'text': 'This is the fifth time point.', 'target': 0},
{'text': 'This is the sixth time point.', 'target': 1}
]
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
dataset = TimeSeriesDataset(data, tokenizer)
dataloader = DataLoader(dataset, batch_size=2)
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
optimizer = AdamW(model.parameters(), lr=1e-5)
for epoch in range(10):
for batch in dataloader:
inputs, targets = batch
optimizer.zero_grad()
outputs = model(**inputs, labels=targets)
loss = outputs.loss
loss.backward()
optimizer.step()
print(f'Epoch {epoch}, Loss: {loss.item()}')
```
此代码演示了如何使用 Transformers 的 tokenizer 和模型处理时间序列数据,并在其上训练一个简单的分类器。在这个示例中,我们定义了一个 TimeSeriesDataset 类来加载数据,并使用 DataLoader 将数据加载到模型中进行训练。我们使用的模型是 BERT,但您可以使用其他 Transformers 模型。
阅读全文