图片序列怎么提取关键帧,代码是什么
时间: 2023-06-03 19:05:28 浏览: 165
关键帧提取可以使用视频处理领域的算法,例如基于聚类、运动估计、特征点匹配等。具体实现可以使用OpenCV等图像处理库实现。以下是一个简单的基于聚类方法的Python示例代码:
```python
import cv2
import numpy as np
def extract_key_frames(video_path, num_frames):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error opening video file")
# 计算视频长度和帧率
num_frames_total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
# 随机选择num_frames帧进行关键帧提取
rand_frames = np.linspace(0, num_frames_total-1, num=num_frames, dtype=np.int)
key_frames = []
while len(key_frames) < num_frames:
ret, frame = cap.read()
if not ret:
break
# 提取每一帧的特征
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
keypoints = cv2.goodFeaturesToTrack(gray, 100, 0.01, 10)
if keypoints is not None:
# 根据特征点进行聚类
kmeans = cv2.KMeans(n_clusters=1)
kmeans.fit(keypoints)
centroids = kmeans.cluster_centers_
# 将聚类的质心作为关键帧
for centroid in centroids:
frame_idx = int(cap.get(cv2.CAP_PROP_POS_FRAMES)-1)
time_ms = cap.get(cv2.CAP_PROP_POS_MSEC)
key_frames.append((frame_idx, time_ms, centroid))
if len(key_frames) >= num_frames:
break
cap.release()
return key_frames
# 从测试视频中提取5个关键帧
key_frames = extract_key_frames("test_video.mp4", 5)
for i, (frame_idx, time_ms, centroid) in enumerate(key_frames):
print(f"Key frame {i+1}: {frame_idx}, {time_ms:.2f}, {centroid}")
```
阅读全文