用java写一个冒泡排序
时间: 2024-03-09 15:20:40 浏览: 60
由于PWC-Net是一个深度学习模型,其代码需要在深度学习框架中实现。以下是使用PyTorch框架实现PWC-Net的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PWCNet(nn.Module):
def __init__(self, input_channels=6, output_channels=2, num_levels=5, num_layers=5, num_filters=32):
super(PWCNet, self).__init__()
self.num_levels = num_levels
self.num_layers = num
# Feature Extraction
self.conv1 = nn.Conv2d_channels, num_filters, kernel_size=3, stride=2, padding=1)
self.conv1b nn.Conv2d(num_filters, num_filters, kernel_size=3,=1, padding=1)
self.conv2a = nn.Conv2d(num_filters, num_filters*2, kernel_size=3, stride=2, padding=1)
self.conv2b = nn.Conv2d(num*2, num_filters*2, kernel_size=3, stride1, padding=1)
self.conv3a nn.Conv2d(num_filters*2, num_filters*4, kernel_size3, stride=2, padding=1)
self.conv3b = nn.Conv2d(num_filters*4, num_filters*4, kernel_size=3, stride=1, padding=1)
self.conv4a = nn.Conv2d(num_filters*4, num_filters*8, kernel_size=3, stride=2, padding=1)
self.conv4b = nn.Conv2d(num_filters*8, num_filters*8, kernel_size=3, stride=1, padding=1)
self.conv5a = nn.Conv2d(num_filters*8, num_filters*8, kernel_size=3, stride=2, padding=1)
self.conv5b = nn.Conv2d(num_filters*8,*8, kernel_size=3, stride=1 padding=1)
# Pyramid Feature
self.pyramid1 = nn.Conv2d(num_filters*8 num_filters*2, kernel_size=3, stride=1, padding=1)
self.pyramid2 = nn.Conv2d(num_filters*2 num_filters*2, kernel_size=3, stride=1, padding=1)
self.pyramid3 = nn.Conv2d(num_filters*4, num_filters*2, kernel_size=3, stride=1, padding=)
self.pyramid_conv4 = nn.Conv2d(num_filters*2 num_filters*2, kernel_size=3, stride=1, padding=1)
self.pyramid_conv5 = nn.Conv2d(num_filters, num_filters*2, kernel_size=, stride=1, padding=1)
self.pyramid_conv6 = nn.Conv2d(num_filters*2, num_filters*2, kernel_size=, stride=1, padding=1)
# Optical Flow Estimation
self.flow_conv1 =.Conv2d(num_filters*8*2, num_filters*4, kernel_size=3, stride=1, padding=1 self.flow_conv2 = nn.Conv2d(num_filters*4, num*4, kernel_size=3, stride=1, padding=1)
self.flow_conv3 = nn.Conv2d(num_filters*4, num_filters4, kernel_size=3, stride=1, padding=1)
self.flow_conv4 = nn.Conv2d(num_filters*4, num_filters*8, kernel_size=3, stride=1, padding=1)
self.flow_conv5 = nn.Conv2d(num_filters*8, num_filters*8, kernel_size=3, stride=1, padding=1)
self.flow_conv6 = nn.Conv2d(num_filters*8, output_channels, kernel_size=3, stride=1, padding=1)
# Upsampling
self.upsample_flow6to5 = nn.ConvTranspose2d(output_channels, output_channels, kernel_size=4, stride=2, padding=1, bias=False)
self.upsample_flow5to4 = nn.ConvTranspose2d(output_channels, output_channels, kernel_size=4, stride=2, padding=1, bias=False)
self.upsample_flow4to3 = nn.ConvTranspose2d(output_channels, output_channels, kernel_size=4, stride=2, padding=1, bias=False)
self.upsample_flow3to2 = nn.ConvTranspose2d(output_channels, output_channels, kernel_size=4, stride=2, padding=1, bias=False)
self.upsample_flow2to1 = nn.ConvTranspose2d(output_channels, output_channels, kernel_size=4, stride=2, padding=1, bias=False)
def forward(self, x):
# Feature Extraction
x1 = F.leaky_relu(self.conv1b(F.leaky_relu(self.conv1a(x))))
x2 = F.leaky_relu(self.conv2b(F.leaky_relu(self.conv2a(x1))))
x3 = F.leaky_relu(self.conv3b(F.leaky_relu(self.conv3a(x2))))
x4 = F.leaky_relu(self.conv4b(F.leaky_relu(self.conv4a(x3))))
x5 = F.leaky_relu(self.conv5b(F.leaky_relu(self.conv5a(x4))))
# Pyramid Feature Extraction
y1 = self.pyramid_conv1(x5)
y2 = self.pyramid_conv2(F.interpolate(y1, x4.size()[2:], mode='bilinear', align_corners=False))
y3 = self.pyramid_conv3(F.interpolate(y2, x3.size()[2:], mode='bilinear', align_corners=False))
y4 = self.pyramid_conv4(F.interpolate(y3, x2.size()[2:], mode='bilinear', align_corners=False))
y5 = self.pyramid_conv5(F.interpolate(y4, x1.size()[2:], mode='bilinear', align_corners=False))
y6 = self.pyramid_conv6(y5)
# Optical Flow Estimation
z1 = torch.cat((x5, y6), dim=1)
z2 = F.leaky_relu(self.flow_conv1(z1))
z3 = F.leaky_relu(self.flow_conv2(z2))
z4 = F.leaky_relu(self.flow_conv3(z3))
z5 = F.leaky_relu(self.flow_conv4(z4))
z6 = F.leaky_relu(self.flow_conv5(z5))
flow = self.flow_conv6(z6)
# Upsampling
flow5 = self.upsample_flow6to5(flow)
flow4 = self.upsample_flow5to4(flow5)
flow3 = self.upsample_flow4to3(flow4)
flow2 = self.upsample_flow3to2(flow3)
flow1 = self.upsample_flow2to1(flow2)
return flow1
```
以上代码实现了PWC-Net的主要部分,包括特征提取、金字塔特征提取、光流估计和上采样等。其输入为两张图像的堆叠张量,输出为一张光流图像。可以根据需要调整模型的输入通道数、输出通道数、金字塔层数、卷积层数和卷积核数等参数。
阅读全文