initializer=layers.xavier_initializer_conv2d()
时间: 2024-05-20 11:12:53 浏览: 74
`initializer=layers.xavier_initializer_conv2d()`是一个参数设置,用于在构建神经网络时初始化卷积层的权重。这里使用的是Xavier初始化器,它会根据输入和输出的神经元数量自动调整权重的范围,以便更好地适应网络的输入和输出数据。这种初始化方法有助于避免梯度消失或爆炸的问题,从而提高神经网络的性能。
相关问题
k_initializer = tf.contrib.layers.xavier_initializer()
This code initializes a variable called "k_initializer" using the Xavier initialization method, which is a popular method for initializing weights in deep neural networks. Xavier initialization aims to set the initial weights in a way that ensures the gradients flow smoothly through the network during training. This can help prevent issues such as vanishing or exploding gradients, which can make it difficult to train a deep neural network effectively. The variable "k_initializer" can be used to initialize the weights of a neural network layer.
ef initialize_parameters(): tf.set_random_seed(1) W1 = tf.get_variable("W1", shape=[4, 4, 3, 8], initializer=tf.contrib.layers.xavier_initializer(seed=0)) W2 = tf.get_variable("W2", shape=[2, 2, 8, 16], initializer=tf.contrib.layers.xavier_initializer(seed=0)) parameters = {"W1": W1, "W2": W2} return parameters tf.reset_default_graph() with tf.Session() as sess_test: parameters = initialize_parameters() init = tf.global_variables_initializer() sess_test.run(init) print("W1 = " + str(parameters["W1"].eval()[1,1,1])) print("W2 = " + str(parameters["W2"].eval()[1,1,1])) 请根据现在python版本纠正这段代码
根据最新的Python版本,你需要进行以下修改:
```python
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def initialize_parameters():
tf.set_random_seed(1)
initializer = tf.initializers.GlorotUniform(seed=0)
W1 = tf.get_variable("W1", shape=[4, 4, 3, 8], initializer=initializer)
W2 = tf.get_variable("W2", shape=[2, 2, 8, 16], initializer=initializer)
parameters = {"W1": W1, "W2": W2}
return parameters
tf.reset_default_graph()
with tf.Session() as sess_test:
parameters = initialize_parameters()
init = tf.global_variables_initializer()
sess_test.run(init)
print("W1 = " + str(parameters["W1"].eval()[1, 1, 1]))
print("W2 = " + str(parameters["W2"].eval()[1, 1, 1]))
```
这段代码使用了最新的TensorFlow版本,并且使用了`tf.initializers.GlorotUniform`进行参数初始化。
阅读全文