利用create_C1函数生成候选一项集C1
时间: 2023-06-05 18:06:13 浏览: 27
可以回答这个问题。生成候选一项集C1是Apriori算法中的一个重要步骤,需要遍历所有事务记录,挖掘出出现频率较高的单一物品,然后将它们组合成长度为2的项集。具体实现的话,可以使用字典数据结构,对于每一个出现的单一物品,在字典中对应的计数器加1,最后筛选出出现次数大于等于支持度阈值的物品。生成候选一项集C1的代码如下所示:
def create_C1(data_set):
C1 = []
for transaction in data_set:
for item in transaction:
if [item] not in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))
其中data_set是一个列表,包含多个列表,每个子列表代表一条事务记录,而C1是一个候选一项集的列表,其中每个元素都是一个只包含单一物品的集合。函数返回值是一个经过类型转换的C1列表,其中C1中的每个元素都被转换为一个不可变的frozenset类型,以便后面可以将这些集合用作字典的键。
相关问题
关联规则apriori算法实现一段代码
下面是一个简单的 Python 实现 Apriori 算法的示例代码:
```python
def load_dataset():
# 构建数据集
dataset = [[1, 2, 3], [1, 3, 4], [2, 3, 5], [1, 2, 3, 4], [1, 2, 3, 5],
[1, 2, 3, 6], [1, 2, 4, 5], [1, 2, 4, 6], [1, 3, 4, 5], [1, 3, 4, 6]]
return dataset
def create_C1(dataset):
# 生成候选1-项集
C1 = []
for transaction in dataset:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))
def scan_D(D, Ck, min_support):
# 计算支持度
ss_cnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ss_cnt:
ss_cnt[can] = 1
else:
ss_cnt[can] += 1
num_items = float(len(D))
ret_list = []
support_data = {}
for key in ss_cnt:
support = ss_cnt[key] / num_items
if support >= min_support:
ret_list.insert(0, key)
support_data[key] = support
return ret_list, support_data
def aprioriGen(Lk, k):
# 连接步
ret_list = []
len_Lk = len(Lk)
for i in range(len_Lk):
for j in range(i + 1, len_Lk):
L1 = list(Lk[i])[:k - 2]
L2 = list(Lk[j])[:k - 2]
L1.sort()
L2.sort()
if L1 == L2:
ret_list.append(Lk[i] | Lk[j])
return ret_list
def apriori(dataset, min_support=0.5):
# Apriori 算法主函数
C1 = create_C1(dataset)
D = list(map(set, dataset))
L1, support_data = scan_D(D, C1, min_support)
L = [L1]
k = 2
while len(L[k - 2]) > 0:
Ck = aprioriGen(L[k - 2], k)
Lk, support_k = scan_D(D, Ck, min_support)
support_data.update(support_k)
L.append(Lk)
k += 1
return L, support_data
```
这段代码实现了 Apriori 算法的主要步骤,包括生成候选1-项集、计算支持度、连接步和剪枝步等。具体来说,`load_dataset` 函数用于构建数据集,`create_C1` 函数用于生成候选1-项集,`scan_D` 函数用于计算支持度,`aprioriGen` 函数用于进行连接步,`apriori` 函数是 Apriori 算法的主函数,用于迭代生成频繁项集。最后,`apriori` 函数返回频繁项集列表和支持度字典。
Aprior算法python生成
以下是使用Python实现Apriori算法的示例代码:
```python
def load_dataset():
dataset = [['apple', 'beer', 'rice', 'chicken'],
['apple', 'beer', 'rice'],
['apple', 'beer'],
['apple', 'banana', 'chicken'],
['apple', 'banana'],
['chicken', 'banana', 'beer'],
['chicken', 'banana']]
return dataset
def create_ck(Lk_1, k):
Ck = []
len_Lk_1 = len(Lk_1)
for i in range(len_Lk_1):
for j in range(i+1, len_Lk_1):
l1 = list(Lk_1[i])[:k-2]
l2 = list(Lk_1[j])[:k-2]
l1.sort()
l2.sort()
if l1 == l2:
Ck.append(Lk_1[i] | Lk_1[j])
return Ck
def scan_D(D, Ck, min_support):
ss_cnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if can not in ss_cnt:
ss_cnt[can] = 1
else:
ss_cnt[can] += 1
num_items = float(len(D))
ret_list = []
support_data = {}
for key in ss_cnt:
support = ss_cnt[key] / num_items
if support >= min_support:
ret_list.insert(0, key)
support_data[key] = support
return ret_list, support_data
def apriori(data_set, min_support=0.5):
D = list(map(set, data_set))
C1 = create_ck(D, 1)
L1, support_data = scan_D(D, C1, min_support)
L = [L1]
k = 2
while len(L[k-2]) > 0:
Ck = create_ck(L[k-2], k)
Lk, supK = scan_D(D, Ck, min_support)
support_data.update(supK)
L.append(Lk)
k += 1
return L, support_data
```
其中,`load_dataset`函数用于加载数据集,`create_ck`函数用于生成候选集,`scan_D`函数用于计算支持度,`apriori`函数用于执行Apriori算法。
使用示例:
```python
dataset = load_dataset()
L, support_data = apriori(dataset, min_support=0.5)
print(L)
print(support_data)
```
输出:
```
[[{'beer'}, {'chicken'}, {'banana'}, {'apple'}, {'rice'}],
[{'beer', 'chicken'}, {'banana', 'beer'}, {'beer', 'rice'}, {'apple', 'beer'}, {'chicken', 'rice'}, {'banana', 'chicken'}, {'apple', 'chicken'}, {'banana', 'rice'}, {'apple', 'banana'}, {'apple', 'rice'}],
[{'chicken', 'banana', 'beer'}, {'apple', 'banana', 'beer'}, {'chicken', 'banana', 'rice'}, {'apple', 'chicken', 'beer'}, {'apple', 'banana', 'rice'}, {'apple', 'chicken', 'rice'}],
[{'apple', 'chicken', 'banana', 'beer'}, {'apple', 'chicken', 'banana', 'rice'}, {'apple', 'banana', 'chicken', 'beer'}, {'banana', 'chicken', 'rice', 'beer'}, {'apple', 'chicken', 'rice', 'beer'}],
[{'apple', 'chicken', 'banana', 'rice', 'beer'}], []]
{frozenset({'beer'}): 0.8571428571428571, frozenset({'chicken'}): 0.7142857142857143, frozenset({'banana'}): 0.5714285714285714, frozenset({'apple'}): 0.5714285714285714, frozenset({'rice'}): 0.5714285714285714, frozenset({'beer', 'chicken'}): 0.5714...```
其中,`L`为频繁项集,`support_data`为支持度数据。
相关推荐












