卷积神经网络简单代码
时间: 2024-04-26 21:19:13 浏览: 107
卷积神经网络(Convolutional Neural Network,CNN)是一种常见的深度学习模型,广泛应用于图像识别、语音识别等领域。下面是一个简单的CNN模型代码示例:
```python
import tensorflow as tf
# 定义CNN模型
def cnn_model_fn(features, labels, mode):
# 输入层
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
# 卷积层1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# 池化层1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# 卷积层2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# 池化层2
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# 全连接层
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# 输出层
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
# 生成预测结果
"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# 定义损失函数和优化器
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
# 定义评估指标
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(labels=labels,
predictions=predictions["classes"])
}
return tf.estimator.EstimatorSpec(mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
# 加载MNIST数据集
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# 创建Estimator
mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn)
# 训练模型
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
mnist_classifier.train(input_fn=train_input_fn, steps=20000)
# 评估模型
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
```
以上代码使用TensorFlow实现了一个简单的CNN模型,用于对MNIST手写数字数据集进行图像分类。在这个模型中,我们使用了两个卷积层、两个池化层和一个全连接层,最后输出10个类别的概率分布。这个模型可以在TensorFlow中进行训练和评估。
阅读全文